MLDeveloper's picture
Update app.py
cf0cd4b verified
raw
history blame
3.73 kB
import streamlit as st
import pandas as pd
import google.generativeai as genai
import os
from io import StringIO
import csv
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Set page configuration first
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
# Initialize Gemini with the API key loaded from the .env file
api_key = os.getenv("GOOGLE_API_KEY")
if api_key:
genai.configure(api_key=api_key)
else:
st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.")
model = genai.GenerativeModel("gemini-1.5-flash")
# Load solar data
@st.cache_data
def load_data():
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
return df
df = load_data()
# UI - Form for user input
st.title("AI-based Solar Project Estimation Tool")
st.write("### Enter Your Details Below:")
with st.form("solar_form"):
state_options = df['State'].dropna().unique()
location = st.selectbox("Select your State", options=sorted(state_options))
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
submitted = st.form_submit_button("Get Estimate")
# Build the prompt for Gemini
def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw):
prompt = f"""
Estimate the solar system for the location '{location}' based on the following details:
- Roof size: {roof_size} sq meters
- Monthly electricity bill: ₹{electricity_bill}
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
Provide the following:
1. Estimated solar system size in kW
2. Estimated daily solar output in kWh
3. Total system cost in ₹
4. Monthly savings in ₹
5. Payback period in years
"""
return prompt
# Generate the solar project estimate via Gemini
if submitted and location and roof_size > 0 and electricity_bill >= 0:
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
if state_data is not None:
ghi = state_data['Avg_GHI (kWh/m²/day)']
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw)
# Call Gemini API once for all the batch generation
with st.spinner("Generating solar estimate with Gemini..."):
response = model.generate_content(prompt_text)
# Display structured output with only the requested points
st.subheader("Solar Project Estimate")
# Break down the response into structured points
estimated_data = response.text.strip().split("\n")
# Display only the required points: system size, cost, savings, and payback period
for point in estimated_data:
if ":" in point: # Only process lines with a colon
try:
# Extract the value after the colon
key, value = point.split(":")
st.write(f"{key.strip()}: {value.strip()}")
except IndexError:
# Handle cases where the split does not give two parts
st.warning("There was an issue processing the response.")
else:
st.error("Sorry, the location entered does not match any available data.")
else:
st.warning("Please fill out all fields to see your solar project estimate.")