MLDeveloper's picture
Update app.py
fb4e4df verified
raw
history blame
4.45 kB
import streamlit as st
import pandas as pd
import google.generativeai as genai
import os
from io import StringIO
import csv
# Set page configuration first
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
# Get API key from environment variable
api_key = os.getenv("AIzaSyCVRGVxIe1vESoAgykgHWOej-jZxiU-RKE")
if not api_key:
st.error("Google API Key not set. Please set the GOOGLE_API_KEY environment variable.")
else:
# Initialize Gemini with the API key
genai.configure(api_key=api_key) # Ensure your Gemini API key is set correctly
model = genai.GenerativeModel("gemini-1.5-flash")
# Load solar data
@st.cache_data
def load_data():
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
return df
df = load_data()
# UI - Form for user input
st.title("AI-based Solar Project Estimation Tool")
st.write("### Enter Your Details Below:")
with st.form("solar_form"):
state_options = df['State'].dropna().unique()
location = st.selectbox("Select your State", options=sorted(state_options))
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
submitted = st.form_submit_button("Get Estimate")
# Build the prompt for Gemini
def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw):
prompt = f"""
Estimate the solar system for the location '{location}' based on the following details:
- Roof size: {roof_size} sq meters
- Monthly electricity bill: ₹{electricity_bill}
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
Provide the following:
1. Estimated solar system size in kW
2. Estimated daily solar output in kWh
3. Total system cost in ₹
4. Monthly savings in ₹
5. Payback period in years
"""
return prompt
# Generate the solar project estimate via Gemini
if submitted and location and roof_size > 0 and electricity_bill >= 0:
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
if state_data is not None:
ghi = state_data['Avg_GHI (kWh/m²/day)']
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw)
# Call Gemini API once for all the batch generation
with st.spinner("Generating solar estimate with Gemini..."):
response = model.generate_content(prompt_text)
# Display structured output
st.subheader("Solar Project Estimate")
# Break down the response into structured points
estimated_data = response.text.strip().split("\n")
for point in estimated_data:
st.write(f"- {point}")
else:
st.error("Sorry, the location entered does not match any available data.")
else:
st.warning("Please fill out all fields to see your solar project estimate.")
# Batch CSV Export
st.markdown("### Export Solar Estimates")
batch = st.number_input("How many estimates to generate?", min_value=1, max_value=100, value=5)
if st.button("Generate Batch & Download CSV"):
if location and roof_size > 0 and electricity_bill >= 0:
csv_buffer = StringIO()
writer = csv.writer(csv_buffer)
writer.writerow(["Sequence_no", "Solar Estimate"] )
# Call Gemini API once for the batch generation
with st.spinner("Generating batch estimates..."):
batch_prompts = [build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) for _ in range(batch)]
batch_responses = [model.generate_content(prompt) for prompt in batch_prompts]
# Process the batch responses and write to CSV
for i, response in enumerate(batch_responses, 1):
writer.writerow([i, response.text.strip()])
st.download_button(
label="Download Solar Estimates CSV",
data=csv_buffer.getvalue(),
file_name="solar_estimates.csv",
mime="text/csv"
)
else:
st.warning("Please fill out all fields to generate batch estimates.")