MLDeveloper's picture
Update app.py
233f1db verified
raw
history blame
6.87 kB
import streamlit as st
import pandas as pd
import google.generativeai as genai
import os
from dotenv import load_dotenv
import plotly.graph_objects as go
# Load environment variables from .env file
load_dotenv()
# Set page configuration
st.set_page_config(page_title="☀️AI-based Solar Project Estimation Tool", layout="centered")
# Initialize Gemini with the API key
api_key = os.getenv("GOOGLE_API_KEY")
if api_key:
genai.configure(api_key=api_key)
else:
st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.")
# Use Gemini-1.5-Pro model
model = genai.GenerativeModel("gemini-1.5-pro")
# Load solar data
@st.cache_data
def load_data():
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
return df
df = load_data()
# Build prompt for Gemini
def build_prompt(location, project_type, roof_size=None, desired_kwh=None, electricity_bill=None, ghi=None, solar_cost_per_kw=None):
if project_type == "Rooftop Solar":
prompt = f"""
You are a solar project estimator tool. Based on the following details, calculate and return only the values without any extra description:
Project Type: Rooftop Solar
Location: {location}
Roof size: {roof_size} sq meters
Monthly electricity bill: ₹{electricity_bill}
Average GHI: {ghi} kWh/m²/day
Solar system cost per kW: ₹{solar_cost_per_kw}
Respond strictly in this format (do not add anything extra):
Estimated solar system size in kW: <value>
Estimated daily solar output in kWh: <value>
Total system cost in ₹: <value>
Monthly savings in ₹: <value>
Payback period in years: <value>
"""
else: # Ground Mount Solar
prompt = f"""
You are a solar project estimator tool. Based on the following details, calculate and return only the values without any extra description:
Project Type: Ground Mount Solar
Location: {location}
Desired monthly solar production: {desired_kwh} kWh
Monthly electricity bill: ₹{electricity_bill}
Average GHI: {ghi} kWh/m²/day
Solar system cost per kW: ₹{solar_cost_per_kw}
Respond strictly in this format (do not add anything extra):
Required solar system size in kW: <value>
Estimated daily solar output in kWh: <value>
Total system cost in ₹: <value>
Monthly savings in ₹: <value>
Payback period in years: <value>
"""
return prompt
# UI - Form for user input
st.title("☀️ AI-based Solar Project Estimation Tool")
st.write("### Enter Your Details Below:")
with st.form("solar_form"):
state_options = df['State'].dropna().unique()
location = st.selectbox("Select your State", options=sorted(state_options))
project_type = st.radio(
"Select Solar Project Type",
options=["Rooftop Solar", "Ground Mount Solar"]
)
if project_type == "Rooftop Solar":
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
desired_kwh = None
else:
desired_kwh = st.number_input("Enter desired monthly solar electricity production (kWh)", min_value=1)
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
roof_size = None
submitted = st.form_submit_button("Get Estimate")
# Generate the solar project estimate via Gemini
if submitted and location:
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
if state_data is not None:
ghi = state_data['Avg_GHI (kWh/m²/day)']
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
prompt_text = build_prompt(location, project_type, roof_size=roof_size, desired_kwh=desired_kwh, electricity_bill=electricity_bill, ghi=ghi, solar_cost_per_kw=solar_cost_per_kw)
# Call Gemini API
with st.spinner("Generating solar estimate with Gemini..."):
response = model.generate_content(prompt_text)
# Display structured output
st.subheader("🔹 Solar Project Estimate")
estimated_data = response.text.strip().split("\n")
system_size_kw = None
monthly_savings_rs = None
total_system_cost = None
payback_period_years = None
for point in estimated_data:
if ":" in point:
try:
key, value = point.split(":", 1)
key = key.strip()
value = value.strip()
st.write(f"**{key}**: {value}")
if "Estimated solar system size" in key or "Required solar system size" in key:
system_size_kw = float(value.split()[0])
if "Monthly savings" in key:
monthly_savings_rs = float(value.split()[0])
if "Total system cost" in key:
total_system_cost = float(value.split()[0])
if "Payback period" in key:
payback_period_years = float(value.split()[0])
except ValueError:
st.warning("There was an issue processing the response. Please try again.")
# Show Graph if values are available
if total_system_cost is not None and monthly_savings_rs is not None and payback_period_years is not None:
st.subheader("📊 Visual Summary")
# Prepare data for Area Chart
months = int(payback_period_years * 12)
savings_cumulative = [monthly_savings_rs * month for month in range(1, months + 1)]
fig = go.Figure()
# Area plot
fig.add_trace(go.Scatter(
x=list(range(1, months + 1)),
y=savings_cumulative,
mode='lines',
fill='tozeroy',
name='Cumulative Savings (₹)',
line=dict(color='#00CC96')
))
# Line for Total Cost
fig.add_trace(go.Scatter(
x=[1, months],
y=[total_system_cost, total_system_cost],
mode='lines',
name='Total System Cost (₹)',
line=dict(color='red', dash='dash')
))
fig.update_layout(
title="Cumulative Savings vs Total System Cost Over Time",
xaxis_title="Months",
yaxis_title="Amount (₹)",
legend_title="Legend",
template="plotly_white"
)
st.plotly_chart(fig, use_container_width=True, key="solar_graph")
else:
st.error("Sorry, the location entered does not match any available data.")
else:
st.info("Please fill out all fields to get your solar project estimate.")