|
import streamlit as st |
|
import pandas as pd |
|
import google.generativeai as genai |
|
import os |
|
from dotenv import load_dotenv |
|
import plotly.graph_objects as go |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
st.set_page_config(page_title="☀️AI-based Solar Project Estimation Tool", layout="centered") |
|
|
|
|
|
api_key = os.getenv("GOOGLE_API_KEY") |
|
if api_key: |
|
genai.configure(api_key=api_key) |
|
else: |
|
st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.") |
|
|
|
|
|
model = genai.GenerativeModel("gemini-1.5-pro") |
|
|
|
|
|
@st.cache_data |
|
def load_data(): |
|
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') |
|
return df |
|
|
|
df = load_data() |
|
|
|
|
|
def build_prompt(location, project_type, roof_size=None, desired_kwh=None, electricity_bill=None, ghi=None, solar_cost_per_kw=None): |
|
if project_type == "Rooftop Solar": |
|
prompt = f""" |
|
You are a solar project estimator tool. Based on the following details, calculate and return only the values without any extra description: |
|
Project Type: Rooftop Solar |
|
Location: {location} |
|
Roof size: {roof_size} sq meters |
|
Monthly electricity bill: ₹{electricity_bill} |
|
Average GHI: {ghi} kWh/m²/day |
|
Solar system cost per kW: ₹{solar_cost_per_kw} |
|
Respond strictly in this format (do not add anything extra): |
|
Estimated solar system size in kW: <value> |
|
Estimated daily solar output in kWh: <value> |
|
Total system cost in ₹: <value> |
|
Monthly savings in ₹: <value> |
|
Payback period in years: <value> |
|
""" |
|
else: |
|
prompt = f""" |
|
You are a solar project estimator tool. Based on the following details, calculate and return only the values without any extra description: |
|
Project Type: Ground Mount Solar |
|
Location: {location} |
|
Desired monthly solar production: {desired_kwh} kWh |
|
Monthly electricity bill: ₹{electricity_bill} |
|
Average GHI: {ghi} kWh/m²/day |
|
Solar system cost per kW: ₹{solar_cost_per_kw} |
|
Respond strictly in this format (do not add anything extra): |
|
Required solar system size in kW: <value> |
|
Estimated daily solar output in kWh: <value> |
|
Total system cost in ₹: <value> |
|
Monthly savings in ₹: <value> |
|
Payback period in years: <value> |
|
""" |
|
return prompt |
|
|
|
|
|
st.title("☀️ AI-based Solar Project Estimation Tool") |
|
st.write("### Enter Your Details Below:") |
|
|
|
with st.form("solar_form"): |
|
state_options = df['State'].dropna().unique() |
|
|
|
location = st.selectbox("Select your State", options=sorted(state_options)) |
|
|
|
project_type = st.radio( |
|
"Select Solar Project Type", |
|
options=["Rooftop Solar", "Ground Mount Solar"] |
|
) |
|
|
|
if project_type == "Rooftop Solar": |
|
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) |
|
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) |
|
desired_kwh = None |
|
else: |
|
desired_kwh = st.number_input("Enter desired monthly solar electricity production (kWh)", min_value=1) |
|
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) |
|
roof_size = None |
|
|
|
submitted = st.form_submit_button("Get Estimate") |
|
|
|
|
|
if submitted and location: |
|
state_data = df[df['State'].str.contains(location, case=False)].iloc[0] |
|
|
|
if state_data is not None: |
|
ghi = state_data['Avg_GHI (kWh/m²/day)'] |
|
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] |
|
|
|
prompt_text = build_prompt(location, project_type, roof_size=roof_size, desired_kwh=desired_kwh, electricity_bill=electricity_bill, ghi=ghi, solar_cost_per_kw=solar_cost_per_kw) |
|
|
|
|
|
with st.spinner("Generating solar estimate with Gemini..."): |
|
response = model.generate_content(prompt_text) |
|
|
|
|
|
st.subheader("🔹 Solar Project Estimate") |
|
|
|
estimated_data = response.text.strip().split("\n") |
|
|
|
system_size_kw = None |
|
monthly_savings_rs = None |
|
total_system_cost = None |
|
payback_period_years = None |
|
|
|
for point in estimated_data: |
|
if ":" in point: |
|
try: |
|
key, value = point.split(":", 1) |
|
key = key.strip() |
|
value = value.strip() |
|
|
|
st.write(f"**{key}**: {value}") |
|
|
|
if "Estimated solar system size" in key or "Required solar system size" in key: |
|
system_size_kw = float(value.split()[0]) |
|
if "Monthly savings" in key: |
|
monthly_savings_rs = float(value.split()[0]) |
|
if "Total system cost" in key: |
|
total_system_cost = float(value.split()[0]) |
|
if "Payback period" in key: |
|
payback_period_years = float(value.split()[0]) |
|
|
|
except ValueError: |
|
st.warning("There was an issue processing the response. Please try again.") |
|
|
|
|
|
if total_system_cost is not None and monthly_savings_rs is not None and payback_period_years is not None: |
|
st.subheader("📊 Visual Summary") |
|
|
|
|
|
months = int(payback_period_years * 12) |
|
savings_cumulative = [monthly_savings_rs * month for month in range(1, months + 1)] |
|
|
|
fig = go.Figure() |
|
|
|
|
|
fig.add_trace(go.Scatter( |
|
x=list(range(1, months + 1)), |
|
y=savings_cumulative, |
|
mode='lines', |
|
fill='tozeroy', |
|
name='Cumulative Savings (₹)', |
|
line=dict(color='#00CC96') |
|
)) |
|
|
|
|
|
fig.add_trace(go.Scatter( |
|
x=[1, months], |
|
y=[total_system_cost, total_system_cost], |
|
mode='lines', |
|
name='Total System Cost (₹)', |
|
line=dict(color='red', dash='dash') |
|
)) |
|
|
|
fig.update_layout( |
|
title="Cumulative Savings vs Total System Cost Over Time", |
|
xaxis_title="Months", |
|
yaxis_title="Amount (₹)", |
|
legend_title="Legend", |
|
template="plotly_white" |
|
) |
|
|
|
st.plotly_chart(fig, use_container_width=True, key="solar_graph") |
|
|
|
else: |
|
st.error("Sorry, the location entered does not match any available data.") |
|
else: |
|
st.info("Please fill out all fields to get your solar project estimate.") |
|
|