Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,951 Bytes
9e426da 911c3a3 9e426da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# vae:
# class_path: src.models.vae.LatentVAE
# init_args:
# precompute: true
# weight_path: /mnt/bn/wangshuai6/models/sd-vae-ft-ema/
# denoiser:
# class_path: src.models.denoiser.decoupled_improved_dit.DDT
# init_args:
# in_channels: 4
# patch_size: 2
# num_groups: 16
# hidden_size: &hidden_dim 1152
# num_blocks: 28
# num_encoder_blocks: 22
# num_classes: 1000
# conditioner:
# class_path: src.models.conditioner.LabelConditioner
# init_args:
# null_class: 1000
# diffusion_sampler:
# class_path: src.diffusion.stateful_flow_matching.sampling.EulerSampler
# init_args:
# num_steps: 250
# guidance: 3.0
# state_refresh_rate: 1
# guidance_interval_min: 0.3
# guidance_interval_max: 1.0
# timeshift: 1.0
# last_step: 0.04
# scheduler: *scheduler
# w_scheduler: src.diffusion.stateful_flow_matching.scheduling.LinearScheduler
# guidance_fn: src.diffusion.base.guidance.simple_guidance_fn
# step_fn: src.diffusion.stateful_flow_matching.sampling.ode_step_fn
import os
import torch
import argparse
from omegaconf import OmegaConf
from src.models.vae import fp2uint8
from src.diffusion.base.guidance import simple_guidance_fn
from src.diffusion.stateful_flow_matching.sharing_sampling import EulerSampler
from src.diffusion.stateful_flow_matching.scheduling import LinearScheduler
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
def instantiate_class(config):
kwargs = config.get("init_args", {})
class_module, class_name = config["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(**kwargs)
def load_model(weight_dict, denosier):
prefix = "ema_denoiser."
for k, v in denoiser.state_dict().items():
try:
v.copy_(weight_dict["state_dict"][prefix + k])
except:
print(f"Failed to copy {prefix + k} to denoiser weight")
return denoiser
class Pipeline:
def __init__(self, vae, denoiser, conditioner, diffusion_sampler, resolution):
self.vae = vae
self.denoiser = denoiser
self.conditioner = conditioner
self.diffusion_sampler = diffusion_sampler
self.resolution = resolution
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def __call__(self, y, num_images, seed, num_steps, guidance, state_refresh_rate, guidance_interval_min, guidance_interval_max, timeshift):
self.diffusion_sampler.num_steps = num_steps
self.diffusion_sampler.guidance = guidance
self.diffusion_sampler.state_refresh_rate = state_refresh_rate
self.diffusion_sampler.guidance_interval_min = guidance_interval_min
self.diffusion_sampler.guidance_interval_max = guidance_interval_max
self.diffusion_sampler.timeshift = timeshift
generator = torch.Generator(device="cuda").manual_seed(seed)
xT = torch.randn((num_images, 4, self.resolution//8, self.resolution//8), device="cuda", dtype=torch.float32, generator=generator)
with torch.no_grad():
condition, uncondition = conditioner([y,]*num_images)
# Sample images:
samples = diffusion_sampler(denoiser, xT, condition, uncondition)
samples = vae.decode(samples)
# fp32 -1,1 -> uint8 0,255
samples = fp2uint8(samples)
samples = samples.permute(0, 2, 3, 1).cpu().numpy()
images = []
for i in range(num_images):
image = Image.fromarray(samples[i])
images.append(image)
return images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/repa_improved_ddt_xlen22de6_512.yaml")
parser.add_argument("--resolution", type=int, default=512)
parser.add_argument("--model_id", type=str, default="MCG-NJU/DDT-XL-22en6de-R512")
parser.add_argument("--ckpt_path", type=str, default="models")
args = parser.parse_args()
if not os.path.exists(args.ckpt_path):
snapshot_download(repo_id=args.model_id, local_dir=args.ckpt_path)
config = OmegaConf.load(args.config)
vae_config = config.model.vae
diffusion_sampler_config = config.model.diffusion_sampler
denoiser_config = config.model.denoiser
conditioner_config = config.model.conditioner
vae = instantiate_class(vae_config)
denoiser = instantiate_class(denoiser_config)
conditioner = instantiate_class(conditioner_config)
diffusion_sampler = EulerSampler(
scheduler=LinearScheduler(),
w_scheduler=LinearScheduler(),
guidance_fn=simple_guidance_fn,
num_steps=50,
guidance=3.0,
state_refresh_rate=1,
guidance_interval_min=0.3,
guidance_interval_max=1.0,
timeshift=1.0
)
ckpt_path = os.path.join(args.ckpt_path, "model.ckpt")
ckpt = torch.load(ckpt_path, map_location="cpu")
denoiser = load_model(ckpt, denoiser)
denoiser = denoiser.cuda()
vae = vae.cuda()
denoiser.eval()
pipeline = Pipeline(vae, denoiser, conditioner, diffusion_sampler, args.resolution)
with gr.Blocks() as demo:
gr.Markdown("DDT")
with gr.Row():
with gr.Column(scale=1):
num_steps = gr.Slider(minimum=1, maximum=100, step=1, label="num steps", value=50)
guidance = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="CFG", value=4.0)
num_images = gr.Slider(minimum=1, maximum=10, step=1, label="num images", value=8)
label = gr.Slider(minimum=0, maximum=999, step=1, label="label", value=948)
seed = gr.Slider(minimum=0, maximum=1000000, step=1, label="seed", value=0)
state_refresh_rate = gr.Slider(minimum=1, maximum=10, step=1, label="encoder reuse", value=1)
guidance_interval_min = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="interval guidance min", value=0.0)
guidance_interval_max = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="interval guidance max", value=1.0)
timeshift = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="timeshift", value=1.0)
with gr.Column(scale=2):
btn = gr.Button("Generate")
output = gr.Gallery(label="Images")
btn.click(fn=pipeline,
inputs=[
label,
num_images,
seed,
num_steps,
guidance,
state_refresh_rate,
guidance_interval_min,
guidance_interval_max,
timeshift
], outputs=[output])
demo.launch(server_name="0.0.0.0", server_port=7861) |