MAsad789565 commited on
Commit
da42e52
·
verified ·
1 Parent(s): 9f9ecac

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer, AdamW
2
+ from torch.utils.data import Dataset, DataLoader
3
+ from datasets import load_dataset
4
+ import torch
5
+
6
+ # Load Ultrachat dataset
7
+ dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
8
+
9
+ # Tokenization
10
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
11
+
12
+ class MyDataset(Dataset):
13
+ def __init__(self, data, max_length=1024):
14
+ self.data = data
15
+ self.max_length = max_length
16
+
17
+ def __len__(self):
18
+ return len(self.data)
19
+
20
+ def __getitem__(self, idx):
21
+ # Extract relevant information from the user and assistant messages
22
+ user_content = self.data[idx][0]['content'] if 'content' in self.data[idx][0] else ""
23
+ assistant_content = self.data[idx][1]['content'] if 'content' in self.data[idx][1] else ""
24
+
25
+ # Combine user and assistant messages into a single text
26
+ text = f"User: {user_content} Assistant: {assistant_content}"
27
+
28
+ # Tokenize the text without squeezing the tensor and convert to Long tensor
29
+ input_ids = tokenizer.encode(text, return_tensors='pt').long()
30
+
31
+ # Optionally truncate or pad the sequence to a maximum length
32
+ input_ids = input_ids[:, :self.max_length]
33
+
34
+ # If needed, pad the sequence to the max_length using torch.nn.functional.pad
35
+ input_ids = torch.nn.functional.pad(input_ids, (0, self.max_length - input_ids.size(1)), 'constant', 0)
36
+
37
+ return {'input_ids': input_ids}
38
+
39
+ # Create DataLoader without collate_fn
40
+ my_dataset = MyDataset(dataset['messages'])
41
+ dataloader = DataLoader(my_dataset, batch_size=4, shuffle=True)
42
+
43
+ # Load pre-trained model
44
+ model = GPT2LMHeadModel.from_pretrained("gpt2")
45
+
46
+ # Move model to GPU if available
47
+ device = torch.device("cpu")
48
+ model.to(device)
49
+
50
+ # Define optimizer
51
+ optimizer = AdamW(model.parameters(), lr=5e-5)
52
+
53
+ # Fine-tuning Loop
54
+ for epoch in range(1):
55
+ total_loss = 0.0
56
+ for i, batch in enumerate(dataloader):
57
+ batch = {k: v.to(device) for k, v in batch.items()}
58
+ outputs = model(**batch, labels=batch['input_ids'])
59
+ loss = outputs.loss
60
+ loss.backward()
61
+ optimizer.step()
62
+ optimizer.zero_grad()
63
+
64
+ total_loss += loss.item()
65
+
66
+ if (i + 1) % 100 == 0: # Print loss every 100 batches
67
+ average_loss = total_loss / 100
68
+ print(f"Epoch: {epoch + 1}, Batch: {i + 1}, Average Loss: {average_loss:.4f}")
69
+ total_loss = 0.0
70
+
71
+ print("Training complete!")
72
+
73
+ model.save_pretrained('/gpt2_finetuned')
74
+ tokenizer.save_pretrained('/gpt2_finetuned/tokenizer')
75
+
76
+ print("Model Saved! \n Enjoy the model Now!")