Spaces:
Running
Running
from fastapi import FastAPI, UploadFile, File | |
from fastapi.responses import JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from huggingface_hub import hf_hub_download | |
from pydantic import BaseModel | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from tensorflow.keras.applications.efficientnet import preprocess_input | |
from PIL import Image | |
import json | |
import io | |
# ==== CONFIG ==== | |
REPO_ID = "MAS-AI-0000/GameNet-1" | |
MODEL_FILENAME = "GameNetModel.h5" | |
#MODEL_FILENAME = "GameNetModel.keras" | |
LABELS_FILENAME = "label_to_index.json" | |
GENRE_FILENAME = "game_genre_map.json" | |
IMG_SIZE = (300, 300) | |
# ==== Load assets ==== | |
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME) | |
labels_path = hf_hub_download(repo_id=REPO_ID, filename=LABELS_FILENAME) | |
genre_path = hf_hub_download(repo_id=REPO_ID, filename=GENRE_FILENAME) | |
model = load_model(model_path) | |
with open(labels_path, "r") as f: | |
label_to_index = json.load(f) | |
index_to_label = {v: k for k, v in label_to_index.items()} | |
with open(genre_path, "r") as f: | |
genre_map = json.load(f) | |
# ==== FastAPI Setup ==== | |
app = FastAPI() | |
# Optional: CORS if frontend is on different domain | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # change this in production | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Response schema | |
class Prediction(BaseModel): | |
game: str | |
genre: str | |
confidence: float | |
# Inference route | |
async def predict(file: UploadFile = File(...)): | |
try: | |
# Step 1: Load image | |
image_bytes = await file.read() | |
img = Image.open(io.BytesIO(image_bytes)).convert("RGB") | |
# Step 2: Resize for EfficientNetB3 (300x300) | |
img = img.resize(IMG_SIZE, Image.Resampling.BICUBIC) | |
# Step 3: Convert to array and preprocess | |
arr = img_to_array(img) | |
arr = preprocess_input(arr) # normalize like in Colab | |
arr = np.expand_dims(arr, axis=0) | |
# Step 4: Inference | |
preds = model.predict(arr) | |
class_idx = int(np.argmax(preds)) | |
confidence = float(np.max(preds)) | |
# Step 5: Get label and genre | |
game = index_to_label.get(class_idx, "Unknown") | |
genre = genre_map.get(game, "Unknown") | |
return Prediction(game=game, genre=genre, confidence=confidence) | |
except Exception as e: | |
return JSONResponse(content={"error": str(e)}, status_code=500) | |