import pydiffvg import torch import skimage import numpy as np # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 256, 256 num_control_points = torch.tensor([2]) points = torch.tensor([[120.0, 30.0], # base [150.0, 60.0], # control point [ 90.0, 198.0], # control point [ 60.0, 218.0]]) # base path = pydiffvg.Path(num_control_points = num_control_points, points = points, is_closed = False, stroke_width = torch.tensor(5.0)) shapes = [path] path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), fill_color = torch.tensor([0.0, 0.0, 0.0, 0.0]), stroke_color = torch.tensor([0.6, 0.3, 0.6, 0.8])) shape_groups = [path_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, # background_image *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_stroke/target.png', gamma=2.2) target = img.clone() # Move the path to produce initial guess # normalize points for easier learning rate points_n = torch.tensor([[100.0/256.0, 40.0/256.0], # base [155.0/256.0, 65.0/256.0], # control point [100.0/256.0, 180.0/256.0], # control point [ 65.0/256.0, 238.0/256.0]], # base requires_grad = True) stroke_color = torch.tensor([0.4, 0.7, 0.5, 0.5], requires_grad=True) stroke_width_n = torch.tensor(10.0 / 100.0, requires_grad=True) path.points = points_n * 256 path.stroke_width = stroke_width_n * 100 path_group.stroke_color = stroke_color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, # background_image *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_stroke/init.png', gamma=2.2) # Optimize optimizer = torch.optim.Adam([points_n, stroke_color, stroke_width_n], lr=1e-2) # Run 200 Adam iterations. for t in range(200): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. path.points = points_n * 256 path.stroke_width = stroke_width_n * 100 path_group.stroke_color = stroke_color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, # background_image *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_stroke/iter_{}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('points_n.grad:', points_n.grad) print('stroke_color.grad:', stroke_color.grad) print('stroke_width.grad:', stroke_width_n.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('points:', path.points) print('stroke_color:', path_group.stroke_color) print('stroke_width:', path.stroke_width) # Render the final result. path.points = points_n * 256 path.stroke_width = stroke_width_n * 100 path_group.stroke_color = stroke_color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 202, # seed None, # background_image *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_stroke/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_stroke/iter_%d.png", "-vb", "20M", "results/single_stroke/out.mp4"])