import pydiffvg import torch import skimage import numpy as np # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 256 ,256 rect = pydiffvg.Rect(p_min = torch.tensor([40.0, 40.0]), p_max = torch.tensor([160.0, 160.0])) shapes = [rect] rect_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) shape_groups = [rect_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, # background_image *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_rect/target.png', gamma=2.2) target = img.clone() # Move the rect to produce initial guess # normalize p_min & p_max for easier learning rate p_min_n = torch.tensor([80.0 / 256.0, 20.0 / 256.0], requires_grad=True) p_max_n = torch.tensor([100.0 / 256.0, 60.0 / 256.0], requires_grad=True) color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) rect.p_min = p_min_n * 256 rect.p_max = p_max_n * 256 rect_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, # background_image *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_rect/init.png', gamma=2.2) # Optimize for radius & center optimizer = torch.optim.Adam([p_min_n, p_max_n, color], lr=1e-2) # Run 100 Adam iterations. for t in range(100): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. rect.p_min = p_min_n * 256 rect.p_max = p_max_n * 256 rect_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, # background_image *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_rect/iter_{}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('p_min.grad:', p_min_n.grad) print('p_max.grad:', p_max_n.grad) print('color.grad:', color.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('p_min:', rect.p_min) print('p_max:', rect.p_max) print('color:', rect_group.fill_color) # Render the final result. scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 102, # seed None, # background_image *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_rect/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_rect/iter_%d.png", "-vb", "20M", "results/single_rect/out.mp4"])