import pydiffvg import torch import skimage import numpy as np # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 256, 256 color = pydiffvg.LinearGradient(\ begin = torch.tensor([50.0, 50.0]), end = torch.tensor([200.0, 200.0]), offsets = torch.tensor([0.0, 1.0]), stop_colors = torch.tensor([[0.2, 0.5, 0.7, 1.0], [0.7, 0.2, 0.5, 1.0]])) circle = pydiffvg.Circle(radius = torch.tensor(40.0), center = torch.tensor([128.0, 128.0])) shapes = [circle] circle_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), fill_color = color) shape_groups = [circle_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, # background_image *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_gradient/target.png', gamma=2.2) target = img.clone() # Move the circle to produce initial guess # normalize radius & center for easier learning rate radius_n = torch.tensor(20.0 / 256.0, requires_grad=True) center_n = torch.tensor([108.0 / 256.0, 138.0 / 256.0], requires_grad=True) begin_n = torch.tensor([100.0 / 256.0, 100.0 / 256.0], requires_grad=True) end_n = torch.tensor([150.0 / 256.0, 150.0 / 256.0], requires_grad=True) stop_colors = torch.tensor([[0.1, 0.9, 0.2, 1.0], [0.5, 0.3, 0.6, 1.0]], requires_grad=True) color.begin = begin_n * 256 color.end = end_n * 256 color.stop_colors = stop_colors circle.radius = radius_n * 256 circle.center = center_n * 256 circle_group.fill_color = color shapes = [circle] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, # background_image *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_gradient/init.png', gamma=2.2) # Optimize for radius & center optimizer = torch.optim.Adam([radius_n, center_n, begin_n, end_n, stop_colors], lr=1e-2) # Run 50 Adam iterations. for t in range(100): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. color.begin = begin_n * 256 color.end = end_n * 256 color.stop_colors = stop_colors circle.radius = radius_n * 256 circle.center = center_n * 256 circle_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, # background_image *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_gradient/iter_{}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('radius.grad:', radius_n.grad) print('center.grad:', center_n.grad) print('begin.grad:', begin_n.grad) print('end.grad:', end_n.grad) print('stop_colors.grad:', stop_colors.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('radius:', circle.radius) print('center:', circle.center) print('begin:', begin_n) print('end:', end_n) print('stop_colors:', stop_colors) # Render the final result. color.begin = begin_n * 256 color.end = end_n * 256 color.stop_colors = stop_colors circle.radius = radius_n * 256 circle.center = center_n * 256 circle_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 52, # seed None, # background_image *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_gradient/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_gradient/iter_%d.png", "-vb", "20M", "results/single_gradient/out.mp4"])