import pydiffvg import torch import skimage import numpy as np # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 256, 256 ellipse = pydiffvg.Ellipse(radius = torch.tensor([60.0, 30.0]), center = torch.tensor([128.0, 128.0])) shapes = [ellipse] ellipse_group = pydiffvg.ShapeGroup(\ shape_ids = torch.tensor([0]), fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]), shape_to_canvas = torch.eye(3, 3)) shape_groups = [ellipse_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, # background_image *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/target.png', gamma=2.2) target = img.clone() # Affine transform the ellipse to produce initial guess color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True) affine = torch.zeros(2, 3) affine[0, 0] = 1.3 affine[0, 1] = 0.2 affine[0, 2] = 0.1 affine[1, 0] = 0.2 affine[1, 1] = 0.6 affine[1, 2] = 0.3 affine.requires_grad = True shape_to_canvas = torch.cat((affine, torch.tensor([[0.0, 0.0, 1.0]])), axis=0) ellipse_group.fill_color = color ellipse_group.shape_to_canvas = shape_to_canvas scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, # background_image *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/init.png', gamma=2.2) # Optimize for radius & center optimizer = torch.optim.Adam([color, affine], lr=1e-2) # Run 150 Adam iterations. for t in range(150): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. ellipse_group.fill_color = color ellipse_group.shape_to_canvas = torch.cat((affine, torch.tensor([[0.0, 0.0, 1.0]])), axis=0) scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, # background_image *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/iter_{}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('color.grad:', color.grad) print('affine.grad:', affine.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('color:', ellipse_group.fill_color) print('affine:', affine) # Render the final result. ellipse_group.fill_color = color ellipse_group.shape_to_canvas = torch.cat((affine, torch.tensor([[0.0, 0.0, 1.0]])), axis=0) scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 52, # seed None, # background_image *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_ellipse_transform/iter_%d.png", "-vb", "20M", "results/single_ellipse_transform/out.mp4"])