import pydiffvg import diffvg from matplotlib import cm import matplotlib.pyplot as plt import argparse import torch def normalize(x, min_, max_): range = max(abs(min_), abs(max_)) return (x + range) / (2 * range) def main(args): canvas_width, canvas_height, shapes, shape_groups = \ pydiffvg.svg_to_scene(args.svg_file) w = int(canvas_width * args.size_scale) h = int(canvas_height * args.size_scale) pfilter = pydiffvg.PixelFilter(type = diffvg.FilterType.box, radius = torch.tensor(0.5)) use_prefiltering = False scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups, filter = pfilter, use_prefiltering = use_prefiltering) num_samples_x = 16 num_samples_y = 16 render = pydiffvg.RenderFunction.apply img = render(w, # width h, # height num_samples_x, # num_samples_x num_samples_y, # num_samples_y 0, # seed None, *scene_args) pydiffvg.imwrite(img.cpu(), 'results/finite_difference_comp/img.png', gamma=1.0) epsilon = 0.1 def perturb_scene(axis, epsilon): shapes[2].points[:, axis] += epsilon # for s in shapes: # if isinstance(s, pydiffvg.Circle): # s.center[axis] += epsilon # elif isinstance(s, pydiffvg.Ellipse): # s.center[axis] += epsilon # elif isinstance(s, pydiffvg.Path): # s.points[:, axis] += epsilon # elif isinstance(s, pydiffvg.Polygon): # s.points[:, axis] += epsilon # elif isinstance(s, pydiffvg.Rect): # s.p_min[axis] += epsilon # s.p_max[axis] += epsilon # for s in shape_groups: # if isinstance(s.fill_color, pydiffvg.LinearGradient): # s.fill_color.begin[axis] += epsilon # s.fill_color.end[axis] += epsilon perturb_scene(0, epsilon) scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups, filter = pfilter, use_prefiltering = use_prefiltering) render = pydiffvg.RenderFunction.apply img0 = render(w, # width h, # height num_samples_x, # num_samples_x num_samples_y, # num_samples_y 0, # seed None, *scene_args) forward_diff = (img0 - img) / (epsilon) forward_diff = forward_diff.sum(axis = 2) x_diff_max = 1.5 x_diff_min = -1.5 print(forward_diff.max()) print(forward_diff.min()) forward_diff = cm.viridis(normalize(forward_diff, x_diff_min, x_diff_max).cpu().numpy()) pydiffvg.imwrite(forward_diff, 'results/finite_difference_comp/shared_edge_forward_diff.png', gamma=1.0) perturb_scene(0, -2 * epsilon) scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups, filter = pfilter, use_prefiltering = use_prefiltering) img1 = render(w, # width h, # height num_samples_x, # num_samples_x num_samples_y, # num_samples_y 0, # seed None, *scene_args) backward_diff = (img - img1) / (epsilon) backward_diff = backward_diff.sum(axis = 2) print(backward_diff.max()) print(backward_diff.min()) backward_diff = cm.viridis(normalize(backward_diff, x_diff_min, x_diff_max).cpu().numpy()) pydiffvg.imwrite(backward_diff, 'results/finite_difference_comp/shared_edge_backward_diff.png', gamma=1.0) perturb_scene(0, epsilon) num_samples_x = 4 num_samples_y = 4 scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups, filter = pfilter, use_prefiltering = use_prefiltering) render_grad = pydiffvg.RenderFunction.render_grad img_grad = render_grad(torch.ones(h, w, 4), w, # width h, # height num_samples_x, # num_samples_x num_samples_y, # num_samples_y 0, # seed *scene_args) print(img_grad[:, :, 0].max()) print(img_grad[:, :, 0].min()) x_diff = cm.viridis(normalize(img_grad[:, :, 0], x_diff_min, x_diff_max).cpu().numpy()) pydiffvg.imwrite(x_diff, 'results/finite_difference_comp/ours_x_diff.png', gamma=1.0) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("svg_file", help="source SVG path") parser.add_argument("--size_scale", type=float, default=1.0) args = parser.parse_args() main(args)