|
import pydiffvg |
|
import torch |
|
import skimage |
|
|
|
|
|
pydiffvg.set_use_gpu(torch.cuda.is_available()) |
|
|
|
canvas_width, canvas_height = 510, 510 |
|
|
|
shapes = pydiffvg.from_svg_path('M510,255c0-20.4-17.85-38.25-38.25-38.25H331.5L204,12.75h-51l63.75,204H76.5l-38.25-51H0L25.5,255L0,344.25h38.25l38.25-51h140.25l-63.75,204h51l127.5-204h140.25C492.15,293.25,510,275.4,510,255z') |
|
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), |
|
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) |
|
shape_groups = [path_group] |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
|
|
render = pydiffvg.RenderFunction.apply |
|
img = render(510, |
|
510, |
|
2, |
|
2, |
|
0, |
|
None, |
|
*scene_args) |
|
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_path/target.png', gamma=2.2) |
|
target = img.clone() |
|
|
|
|
|
|
|
noise = torch.FloatTensor(shapes[0].points.shape).uniform_(0.0, 1.0) |
|
points_n = (shapes[0].points.clone() + (noise * 60 - 30)) / 510.0 |
|
points_n.requires_grad = True |
|
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) |
|
shapes[0].points = points_n * 510 |
|
path_group.fill_color = color |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
img = render(510, |
|
510, |
|
2, |
|
2, |
|
1, |
|
None, |
|
*scene_args) |
|
pydiffvg.imwrite(img.cpu(), 'results/single_path/init.png', gamma=2.2) |
|
|
|
|
|
optimizer = torch.optim.Adam([points_n, color], lr=1e-2) |
|
|
|
for t in range(100): |
|
print('iteration:', t) |
|
optimizer.zero_grad() |
|
|
|
shapes[0].points = points_n * 510 |
|
path_group.fill_color = color |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
img = render(510, |
|
510, |
|
2, |
|
2, |
|
t+1, |
|
None, |
|
*scene_args) |
|
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_path/iter_{:02}.png'.format(t), gamma=2.2) |
|
|
|
loss = (img - target).pow(2).sum() |
|
print('loss:', loss.item()) |
|
|
|
|
|
loss.backward() |
|
|
|
print('points_n.grad:', points_n.grad) |
|
print('color.grad:', color.grad) |
|
|
|
|
|
optimizer.step() |
|
|
|
print('points:', shapes[0].points) |
|
print('color:', path_group.fill_color) |
|
|
|
|
|
shapes[0].points = points_n * 510 |
|
path_group.fill_color = color |
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\ |
|
canvas_width, canvas_height, shapes, shape_groups) |
|
img = render(510, |
|
510, |
|
2, |
|
2, |
|
102, |
|
None, |
|
*scene_args) |
|
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_path/final.png') |
|
|
|
|
|
from subprocess import call |
|
call(["ffmpeg", "-framerate", "20", "-i", |
|
"results/single_path/iter_%02d.png", "-vb", "20M", |
|
"results/single_path/out.mp4"]) |
|
|