Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,6 @@ st.set_page_config(
|
|
19 |
layout="wide"
|
20 |
)
|
21 |
|
22 |
-
st.title("دستیارهوشمند ارتش ")
|
23 |
|
24 |
st.markdown("""
|
25 |
<style>
|
@@ -463,162 +462,98 @@ st.markdown("""
|
|
463 |
</style>
|
464 |
""", unsafe_allow_html=True)
|
465 |
|
466 |
-
import
|
467 |
-
import
|
468 |
-
import docx
|
469 |
import streamlit as st
|
470 |
-
import
|
471 |
-
from hazm import Normalizer
|
472 |
-
from rapidfuzz import fuzz
|
473 |
from langchain.schema import SystemMessage, HumanMessage
|
474 |
from langchain.chat_models import ChatOpenAI
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
]
|
510 |
-
def remove_stop_words(text, stop_words):
|
511 |
-
words = text.split()
|
512 |
-
return " ".join([word for word in words if word not in stop_words])
|
513 |
-
|
514 |
-
def extract_keywords_from_text(text, query_words):
|
515 |
-
matched_lines = []
|
516 |
-
lines = text.split("\n")
|
517 |
-
for line in lines:
|
518 |
-
if any(query_word in line for query_word in query_words):
|
519 |
-
matched_lines.append(line)
|
520 |
-
return matched_lines
|
521 |
|
522 |
def clean_text(text):
|
523 |
-
|
524 |
-
|
525 |
-
def find_closest_lines(query, doc_texts, stop_words, top_n=10):
|
526 |
-
cleaned_query = remove_stop_words(query, stop_words)
|
527 |
-
query_words = cleaned_query.split()
|
528 |
-
all_matched_lines = []
|
529 |
-
|
530 |
-
for filename, text in doc_texts.items():
|
531 |
-
matched_lines = extract_keywords_from_text(text, query_words)
|
532 |
-
for line in matched_lines:
|
533 |
-
similarity = fuzz.partial_ratio(query, line)
|
534 |
-
all_matched_lines.append((line, similarity))
|
535 |
-
|
536 |
-
all_matched_lines.sort(key=lambda x: x[1], reverse=True)
|
537 |
-
return [line for line, _ in all_matched_lines[:top_n]]
|
538 |
-
|
539 |
-
def remove_stop_words_from_lines(lines, stop_words):
|
540 |
-
cleaned_lines = []
|
541 |
-
for line in lines:
|
542 |
-
words = line.split()
|
543 |
-
cleaned_words = [word for word in words if word not in stop_words]
|
544 |
-
cleaned_lines.append(" ".join(cleaned_words))
|
545 |
-
return cleaned_lines
|
546 |
|
547 |
-
st.markdown("""
|
548 |
-
<style>
|
549 |
-
/* تنظیمات برای بالا بردن موقعیت input و ضخیمتر کردن فونت */
|
550 |
-
div[data-baseweb="input"] {
|
551 |
-
margin-top: 1px !important; /* فاصله از بالا (کم کن یا زیاد کن به دلخواه) */
|
552 |
-
font-weight: 800 !important; /* فونت کلفت */
|
553 |
-
font-size: 22px !important; /* اندازه فونت بزرگتر */
|
554 |
-
font-family: "Vazir", sans-serif !important; /* اگر فونت فارسی دادی */
|
555 |
-
direction: rtl !important; /* راست به چپ */
|
556 |
-
text-align: right !important; /* متن راست چین */
|
557 |
-
}
|
558 |
-
</style>
|
559 |
-
""", unsafe_allow_html=True)
|
560 |
|
561 |
-
query = st.
|
|
|
|
|
|
|
562 |
|
563 |
if query:
|
564 |
-
|
565 |
thinking = st.empty()
|
566 |
-
thinking.markdown(""
|
567 |
-
<div style="background-color:#0d4d31;padding:10px;border-radius:10px;">
|
568 |
-
⏳ در حال فکر کردن...
|
569 |
-
</div>
|
570 |
-
""", unsafe_allow_html=True)
|
571 |
|
572 |
-
|
573 |
-
|
|
|
|
|
574 |
|
575 |
-
|
576 |
prompt = f"""
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
پاسخ باید نهایی، روان، و در حدود 512 تا 2048 کاراکتر باشد.
|
582 |
-
مستقیماً پاسخ را بنویس و هیچ توضیحی درباره نحوه رسیدن به پاسخ نده.
|
583 |
-
|
584 |
-
سوال:
|
585 |
{query}
|
586 |
-
|
587 |
-
|
588 |
-
{
|
589 |
-
|
590 |
پاسخ نهایی:
|
591 |
"""
|
|
|
592 |
response = llm([
|
593 |
SystemMessage(
|
594 |
-
|
595 |
),
|
596 |
HumanMessage(content=prompt)
|
597 |
])
|
598 |
final_answer = clean_text(response.content.strip())
|
599 |
-
|
600 |
-
|
|
|
601 |
|
602 |
thinking.empty()
|
603 |
|
604 |
st.session_state.chat_history.append(("🧑", query))
|
605 |
st.session_state.chat_history.append(("🤖", final_answer))
|
606 |
|
607 |
-
|
608 |
-
<style>
|
609 |
-
@import url('https://cdn.fontcdn.ir/Font/Persian/Vazir/Vazir.css');
|
610 |
-
div.chat-message {
|
611 |
-
font-family: 'Vazir', sans-serif;
|
612 |
-
font-size: 16px;
|
613 |
-
color: white;
|
614 |
-
background-color: #0d4d31;
|
615 |
-
padding: 10px;
|
616 |
-
border-radius: 10px;
|
617 |
-
margin-bottom: 5px;
|
618 |
-
}
|
619 |
-
</style>
|
620 |
-
""", unsafe_allow_html=True)
|
621 |
-
|
622 |
st.markdown("---")
|
623 |
for sender, message in st.session_state.chat_history:
|
624 |
-
st.markdown(f'<div
|
|
|
19 |
layout="wide"
|
20 |
)
|
21 |
|
|
|
22 |
|
23 |
st.markdown("""
|
24 |
<style>
|
|
|
462 |
</style>
|
463 |
""", unsafe_allow_html=True)
|
464 |
|
465 |
+
import json
|
466 |
+
import requests
|
|
|
467 |
import streamlit as st
|
468 |
+
import numpy as np
|
|
|
|
|
469 |
from langchain.schema import SystemMessage, HumanMessage
|
470 |
from langchain.chat_models import ChatOpenAI
|
471 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
472 |
+
|
473 |
+
EMBEDDING_FILE = "embeddings.json"
|
474 |
+
EMBEDDING_MODEL = "intfloat/multilingual-e5-large-instruct"
|
475 |
+
TOGETHER_API_KEY = "333ac33f5be91819cb7ade101134d73f5e63d299a964ae290850eeac5d82a8d5"
|
476 |
+
|
477 |
+
@st.cache_data
|
478 |
+
def load_embeddings(file_path):
|
479 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
480 |
+
return json.load(f)
|
481 |
+
|
482 |
+
def get_query_embedding_together(query):
|
483 |
+
url = "https://api.together.xyz/v1/embeddings"
|
484 |
+
headers = {
|
485 |
+
"Authorization": f"Bearer {TOGETHER_API_KEY}",
|
486 |
+
"accept": "application/json",
|
487 |
+
"content-type": "application/json"
|
488 |
+
}
|
489 |
+
payload = {
|
490 |
+
"model": EMBEDDING_MODEL,
|
491 |
+
"input": query
|
492 |
+
}
|
493 |
+
response = requests.post(url, headers=headers, json=payload)
|
494 |
+
response.raise_for_status()
|
495 |
+
return response.json()["data"][0]["embedding"]
|
496 |
+
|
497 |
+
def find_most_similar_chunks(query_embedding, data, top_n=3):
|
498 |
+
query_vec = np.array(query_embedding).reshape(1, -1)
|
499 |
+
similarities = []
|
500 |
+
for item in data:
|
501 |
+
chunk_vec = np.array(item["embedding"]).reshape(1, -1)
|
502 |
+
sim = cosine_similarity(query_vec, chunk_vec)[0][0]
|
503 |
+
similarities.append((item["chunk"], sim))
|
504 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
505 |
+
return [chunk for chunk, _ in similarities[:top_n]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
|
507 |
def clean_text(text):
|
508 |
+
import re
|
509 |
+
return re.sub(r'[^آ-یa-zA-Z0-9۰-۹,.،؟!؛\s]+', '', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
|
512 |
+
query = st.text_input("سؤال خود را وارد کنید:")
|
513 |
+
|
514 |
+
if "chat_history" not in st.session_state:
|
515 |
+
st.session_state.chat_history = []
|
516 |
|
517 |
if query:
|
|
|
518 |
thinking = st.empty()
|
519 |
+
thinking.markdown("⏳ در حال پردازش...")
|
|
|
|
|
|
|
|
|
520 |
|
521 |
+
try:
|
522 |
+
query_embedding = get_query_embedding_together(query)
|
523 |
+
data = load_embeddings(EMBEDDING_FILE)
|
524 |
+
top_chunks = find_most_similar_chunks(query_embedding, data, top_n=3)
|
525 |
|
526 |
+
context = "\n".join(top_chunks)
|
527 |
prompt = f"""
|
528 |
+
فقط و فقط با استفاده از محتوای زیر به سؤال پاسخ بده.
|
529 |
+
اگر اطلاعات کافی نبود، واضح بگو اطلاعات کافی وجود ندارد، سپس با دانش عمومی پاسخ بده.
|
530 |
+
|
531 |
+
سؤال:
|
|
|
|
|
|
|
|
|
532 |
{query}
|
533 |
+
|
534 |
+
محتوا:
|
535 |
+
{context}
|
536 |
+
|
537 |
پاسخ نهایی:
|
538 |
"""
|
539 |
+
|
540 |
response = llm([
|
541 |
SystemMessage(
|
542 |
+
content="تو یک دستیار دقیق هستی که فقط با اطلاعات موجود در متن پاسخ میدهی. اگر اطلاعات نبود، آن را اعلام میکنی و بعد از دانش خودت استفاده میکنی."
|
543 |
),
|
544 |
HumanMessage(content=prompt)
|
545 |
])
|
546 |
final_answer = clean_text(response.content.strip())
|
547 |
+
|
548 |
+
except Exception as e:
|
549 |
+
final_answer = f"❗ خطا: {str(e)}"
|
550 |
|
551 |
thinking.empty()
|
552 |
|
553 |
st.session_state.chat_history.append(("🧑", query))
|
554 |
st.session_state.chat_history.append(("🤖", final_answer))
|
555 |
|
556 |
+
# نمایش چت
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
st.markdown("---")
|
558 |
for sender, message in st.session_state.chat_history:
|
559 |
+
st.markdown(f'<div style="direction:rtl;text-align:right;padding:10px;border-radius:10px;background-color:#0d4d31;color:white;"><strong>{sender}</strong>: {message}</div>', unsafe_allow_html=True)
|