from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import pipeline import torch from fastapi.middleware.cors import CORSMiddleware app = FastAPI(title="Model Inference API") # Allow CORS for external frontend app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) MODEL_MAP = { "tinny-llama": "Lyon28/Tinny-Llama", "pythia": "Lyon28/Pythia", "bert-tinny": "Lyon28/Bert-Tinny", "albert-base-v2": "Lyon28/Albert-Base-V2", "t5-small": "Lyon28/T5-Small", "gpt-2": "Lyon28/GPT-2", "gpt-neo": "Lyon28/GPT-Neo", "distilbert-base-uncased": "Lyon28/Distilbert-Base-Uncased", "distil-gpt-2": "Lyon28/Distil_GPT-2", "gpt-2-tinny": "Lyon28/GPT-2-Tinny", "electra-small": "Lyon28/Electra-Small" } TASK_MAP = { "text-generation": ["gpt-2", "gpt-neo", "distil-gpt-2", "gpt-2-tinny", "tinny-llama", "pythia"], "text-classification": ["bert-tinny", "albert-base-v2", "distilbert-base-uncased", "electra-small"], "text2text-generation": ["t5-small"] } class InferenceRequest(BaseModel): text: str max_length: int = 100 temperature: float = 0.9 def get_task(model_id: str): for task, models in TASK_MAP.items(): if model_id in models: return task return "text-generation" @app.on_event("startup") async def load_models(): # Initialize models (optional: pre-load critical models) app.state.pipelines = {} print("Models initialized in memory") @app.post("/inference/{model_id}") async def model_inference(model_id: str, request: InferenceRequest): try: if model_id not in MODEL_MAP: raise HTTPException(status_code=404, detail="Model not found") task = get_task(model_id) # Load pipeline with caching if model_id not in app.state.pipelines: app.state.pipelines[model_id] = pipeline( task=task, model=MODEL_MAP[model_id], device_map="auto", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) pipe = app.state.pipelines[model_id] # Process based on task if task == "text-generation": result = pipe( request.text, max_length=request.max_length, temperature=request.temperature )[0]['generated_text'] elif task == "text-classification": output = pipe(request.text)[0] result = { "label": output['label'], "confidence": round(output['score'], 4) } elif task == "text2text-generation": result = pipe(request.text)[0]['generated_text'] return {"result": result} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/models") async def list_models(): return {"available_models": list(MODEL_MAP.keys())} @app.get("/health") async def health_check(): return {"status": "healthy"}