Lyon28's picture
Create app.py
bc44dae verified
raw
history blame
3.12 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
import torch
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI(title="Model Inference API")
# Allow CORS for external frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
MODEL_MAP = {
"tinny-llama": "Lyon28/Tinny-Llama",
"pythia": "Lyon28/Pythia",
"bert-tinny": "Lyon28/Bert-Tinny",
"albert-base-v2": "Lyon28/Albert-Base-V2",
"t5-small": "Lyon28/T5-Small",
"gpt-2": "Lyon28/GPT-2",
"gpt-neo": "Lyon28/GPT-Neo",
"distilbert-base-uncased": "Lyon28/Distilbert-Base-Uncased",
"distil-gpt-2": "Lyon28/Distil_GPT-2",
"gpt-2-tinny": "Lyon28/GPT-2-Tinny",
"electra-small": "Lyon28/Electra-Small"
}
TASK_MAP = {
"text-generation": ["gpt-2", "gpt-neo", "distil-gpt-2", "gpt-2-tinny", "tinny-llama", "pythia"],
"text-classification": ["bert-tinny", "albert-base-v2", "distilbert-base-uncased", "electra-small"],
"text2text-generation": ["t5-small"]
}
class InferenceRequest(BaseModel):
text: str
max_length: int = 100
temperature: float = 0.9
def get_task(model_id: str):
for task, models in TASK_MAP.items():
if model_id in models:
return task
return "text-generation"
@app.on_event("startup")
async def load_models():
# Initialize models (optional: pre-load critical models)
app.state.pipelines = {}
print("Models initialized in memory")
@app.post("/inference/{model_id}")
async def model_inference(model_id: str, request: InferenceRequest):
try:
if model_id not in MODEL_MAP:
raise HTTPException(status_code=404, detail="Model not found")
task = get_task(model_id)
# Load pipeline with caching
if model_id not in app.state.pipelines:
app.state.pipelines[model_id] = pipeline(
task=task,
model=MODEL_MAP[model_id],
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
pipe = app.state.pipelines[model_id]
# Process based on task
if task == "text-generation":
result = pipe(
request.text,
max_length=request.max_length,
temperature=request.temperature
)[0]['generated_text']
elif task == "text-classification":
output = pipe(request.text)[0]
result = {
"label": output['label'],
"confidence": round(output['score'], 4)
}
elif task == "text2text-generation":
result = pipe(request.text)[0]['generated_text']
return {"result": result}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/models")
async def list_models():
return {"available_models": list(MODEL_MAP.keys())}
@app.get("/health")
async def health_check():
return {"status": "healthy"}