Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,433 Bytes
a703203 248f5a7 a703203 8c3c2b9 a703203 d181b45 293686e 889f080 248f5a7 4c6b4c5 ac8e9cc 4c6b4c5 0ff6c39 eb215ff a703203 eb215ff a703203 9d3ca6c d181b45 eb215ff cd26609 12d3fe3 c8399e3 7c5f318 2882063 7c5f318 293686e cb16ac6 293686e 7308211 cb16ac6 293686e 68e6569 7c5f318 23b3848 293686e 6a4537b cd26609 ac8e9cc a703203 ac8e9cc 293686e ac8e9cc 293686e 889f080 293686e 889f080 293686e cc12a51 293686e ac8e9cc 293686e 889f080 ac8e9cc cc12a51 ac8e9cc a703203 293686e ac8e9cc 293686e ac8e9cc a703203 293686e a703203 293686e 960db60 8c3c2b9 960db60 ef361b0 ac8e9cc 293686e e2ee907 ac8e9cc 293686e ac8e9cc a703203 293686e a703203 293686e a703203 293686e eb215ff 6a87eb4 bc257ff 6a87eb4 8d42201 bc257ff 9ad3ffd a2f07a4 9ad3ffd e2ee907 a2f07a4 6a87eb4 8d42201 a2f07a4 9ad3ffd ac8e9cc 960db60 41ee8bf 293686e 939895d 293686e 939895d 293686e 8c3c2b9 939895d 293686e 8c3c2b9 293686e 8c3c2b9 293686e 41ee8bf eb215ff 8c3c2b9 c09049b ac8e9cc eb215ff 293686e a703203 293686e afa19a3 5f6306a 6a87eb4 5f6306a eb215ff 293686e eb215ff d181b45 293686e a703203 293686e a703203 d730ffe 293686e 079e166 a703203 293686e e2ee907 293686e a703203 293686e e2ee907 293686e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import re # for parsing <think> blocks
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
from transformers import AutoTokenizer
from duckduckgo_search import DDGS
import spaces # Import spaces early to enable ZeroGPU support
# Optional: Disable GPU visibility if you wish to force CPU usage
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
"DeepSeek-R1-0528-Qwen3-8B": {"repo_id": "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "description": "DeepSeek-R1-0528-Qwen3-8B"},
"Nemotron-Research-Reasoning-Qwen-1.5B": {"repo_id": "nvidia/Nemotron-Research-Reasoning-Qwen-1.5B", "description": "Nemotron-Research-Reasoning-Qwen-1.5B"},
"Qwen2.5-Taiwan-1.5B-Instruct": {"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "description": "Qwen2.5-Taiwan-1.5B-Instruct"},
"Taiwan-ELM-1_1B-Instruct": {"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct", "description": "Taiwan-ELM-1_1B-Instruct"},
"Taiwan-ELM-270M-Instruct": {"repo_id": "liswei/Taiwan-ELM-270M-Instruct", "description": "Taiwan-ELM-270M-Instruct"},
# "Granite-4.0-Tiny-Preview": {"repo_id": "ibm-granite/granite-4.0-tiny-preview", "description": "Granite-4.0-Tiny-Preview"},
"Qwen3-0.6B": {"repo_id":"Qwen/Qwen3-0.6B","description":"Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities."},
"Qwen3-1.7B": {"repo_id":"Qwen/Qwen3-1.7B","description":"Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages."},
"Qwen3-4B": {"repo_id":"Qwen/Qwen3-4B","description":"Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning."},
"Qwen3-8B": {"repo_id":"Qwen/Qwen3-8B","description":"Dense causal language model with 8.2 B total parameters (6.95 B non-embedding), 36 layers, 32 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), excels at multilingual instruction following & zero-shot tasks."},
"Qwen3-14B": {"repo_id":"Qwen/Qwen3-14B","description":"Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration."},
# "Qwen3-32B": {"repo_id":"Qwen/Qwen3-32B","description":"Dense causal language model with 32.8 B total parameters (31.2 B non-embedding), 64 layers, 64 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), flagship variant delivering state-of-the-art reasoning & instruction following."},
# "Qwen3-30B-A3B": {"repo_id":"Qwen/Qwen3-30B-A3B","description":"Mixture-of-Experts model with 30.5 B total parameters (29.9 B non-embedding, 3.3 B activated per token), 48 layers, 128 experts (8 activated per token), 32 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), MoE routing for scalable specialized reasoning."},
# "Qwen3-235B-A22B":{"repo_id":"Qwen/Qwen3-235B-A22B","description":"Mixture-of-Experts model with 235 B total parameters (234 B non-embedding, 22 B activated per token), 94 layers, 128 experts (8 activated per token), 64 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), ultra-scale reasoning & agentic workflows."},
"Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
"SmolLM2_135M_Grpo_Gsm8k":{"repo_id":"prithivMLmods/SmolLM2_135M_Grpo_Gsm8k", "desscription":"SmolLM2_135M_Grpo_Gsm8k"},
"SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
"SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
"SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"},
"SmolLM2-360M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct", "description": "Original SmolLM2‑360M Instruct"},
"Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
"MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
"Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
"Qwen2.5-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-7B-Instruct", "description": "Qwen2.5-7B-Instruct"},
"Phi-4-mini-Reasoning": {"repo_id": "microsoft/Phi-4-mini-reasoning", "description": "Phi-4-mini-Reasoning"},
# "Phi-4-Reasoning": {"repo_id": "microsoft/Phi-4-reasoning", "description": "Phi-4-Reasoning"},
"Phi-4-mini-Instruct": {"repo_id": "microsoft/Phi-4-mini-instruct", "description": "Phi-4-mini-Instruct"},
"Meta-Llama-3.1-8B-Instruct": {"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct", "description": "Meta-Llama-3.1-8B-Instruct"},
"DeepSeek-R1-Distill-Llama-8B": {"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B", "description": "DeepSeek-R1-Distill-Llama-8B"},
"Mistral-7B-Instruct-v0.3": {"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3", "description": "Mistral-7B-Instruct-v0.3"},
"Qwen2.5-Coder-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct", "description": "Qwen2.5-Coder-7B-Instruct"},
"Qwen2.5-Omni-3B": {"repo_id": "Qwen/Qwen2.5-Omni-3B", "description": "Qwen2.5-Omni-3B"},
"MiMo-7B-RL": {"repo_id": "XiaomiMiMo/MiMo-7B-RL", "description": "MiMo-7B-RL"},
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
tokenizer = AutoTokenizer.from_pretrained(repo)
for dtype in (torch.bfloat16, torch.float16, torch.float32):
try:
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
except Exception:
continue
# Final fallback
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
def retrieve_context(query, max_results=6, max_chars=600):
"""
Retrieve search snippets from DuckDuckGo (runs in background).
Returns a list of result strings.
"""
try:
with DDGS() as ddgs:
return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
except Exception:
return []
def format_conversation(history, system_prompt, tokenizer):
if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
messages = [{"role": "system", "content": system_prompt.strip()}] + history
return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)
else:
# Fallback for base LMs without chat template
prompt = system_prompt.strip() + "\n"
for msg in history:
if msg['role'] == 'user':
prompt += "User: " + msg['content'].strip() + "\n"
elif msg['role'] == 'assistant':
prompt += "Assistant: " + msg['content'].strip() + "\n"
if not prompt.strip().endswith("Assistant:"):
prompt += "Assistant: "
return prompt
@spaces.GPU(duration=60)
def chat_response(user_msg, chat_history, system_prompt,
enable_search, max_results, max_chars,
model_name, max_tokens, temperature,
top_k, top_p, repeat_penalty, search_timeout):
"""
Generates streaming chat responses, optionally with background web search.
"""
cancel_event.clear()
history = list(chat_history or [])
history.append({'role': 'user', 'content': user_msg})
# Launch web search if enabled
debug = ''
search_results = []
if enable_search:
debug = 'Search task started.'
thread_search = threading.Thread(
target=lambda: search_results.extend(
retrieve_context(user_msg, int(max_results), int(max_chars))
)
)
thread_search.daemon = True
thread_search.start()
else:
debug = 'Web search disabled.'
try:
cur_date = datetime.now().strftime('%Y-%m-%d')
# merge any fetched search results into the system prompt
if search_results:
enriched = system_prompt.strip() + \
f'''\n# The following contents are the search results related to the user's message:
{search_results}
In the search results I provide to you, each result is formatted as [webpage X begin]...[webpage X end], where X represents the numerical index of each article. Please cite the context at the end of the relevant sentence when appropriate. Use the citation format [citation:X] in the corresponding part of your answer. If a sentence is derived from multiple contexts, list all relevant citation numbers, such as [citation:3][citation:5]. Be sure not to cluster all citations at the end; instead, include them in the corresponding parts of the answer.
When responding, please keep the following points in mind:
- Today is {cur_date}.
- Not all content in the search results is closely related to the user's question. You need to evaluate and filter the search results based on the question.
- For listing-type questions (e.g., listing all flight information), try to limit the answer to 10 key points and inform the user that they can refer to the search sources for complete information. Prioritize providing the most complete and relevant items in the list. Avoid mentioning content not provided in the search results unless necessary.
- For creative tasks (e.g., writing an essay), ensure that references are cited within the body of the text, such as [citation:3][citation:5], rather than only at the end of the text. You need to interpret and summarize the user's requirements, choose an appropriate format, fully utilize the search results, extract key information, and generate an answer that is insightful, creative, and professional. Extend the length of your response as much as possible, addressing each point in detail and from multiple perspectives, ensuring the content is rich and thorough.
- If the response is lengthy, structure it well and summarize it in paragraphs. If a point-by-point format is needed, try to limit it to 5 points and merge related content.
- For objective Q&A, if the answer is very brief, you may add one or two related sentences to enrich the content.
- Choose an appropriate and visually appealing format for your response based on the user's requirements and the content of the answer, ensuring strong readability.
- Your answer should synthesize information from multiple relevant webpages and avoid repeatedly citing the same webpage.
- Unless the user requests otherwise, your response should be in the same language as the user's question.
# The user's message is:
'''
else:
enriched = system_prompt
# wait up to 1s for snippets, then replace debug with them
if enable_search:
thread_search.join(timeout=float(search_timeout))
if search_results:
debug = "### Search results merged into prompt\n\n" + "\n".join(
f"- {r}" for r in search_results
)
else:
debug = "*No web search results found.*"
# merge fetched snippets into the system prompt
if search_results:
enriched = system_prompt.strip() + \
f'''\n# The following contents are the search results related to the user's message:
{search_results}
In the search results I provide to you, each result is formatted as [webpage X begin]...[webpage X end], where X represents the numerical index of each article. Please cite the context at the end of the relevant sentence when appropriate. Use the citation format [citation:X] in the corresponding part of your answer. If a sentence is derived from multiple contexts, list all relevant citation numbers, such as [citation:3][citation:5]. Be sure not to cluster all citations at the end; instead, include them in the corresponding parts of the answer.
When responding, please keep the following points in mind:
- Today is {cur_date}.
- Not all content in the search results is closely related to the user's question. You need to evaluate and filter the search results based on the question.
- For listing-type questions (e.g., listing all flight information), try to limit the answer to 10 key points and inform the user that they can refer to the search sources for complete information. Prioritize providing the most complete and relevant items in the list. Avoid mentioning content not provided in the search results unless necessary.
- For creative tasks (e.g., writing an essay), ensure that references are cited within the body of the text, such as [citation:3][citation:5], rather than only at the end of the text. You need to interpret and summarize the user's requirements, choose an appropriate format, fully utilize the search results, extract key information, and generate an answer that is insightful, creative, and professional. Extend the length of your response as much as possible, addressing each point in detail and from multiple perspectives, ensuring the content is rich and thorough.
- If the response is lengthy, structure it well and summarize it in paragraphs. If a point-by-point format is needed, try to limit it to 5 points and merge related content.
- For objective Q&A, if the answer is very brief, you may add one or two related sentences to enrich the content.
- Choose an appropriate and visually appealing format for your response based on the user's requirements and the content of the answer, ensuring strong readability.
- Your answer should synthesize information from multiple relevant webpages and avoid repeatedly citing the same webpage.
- Unless the user requests otherwise, your response should be in the same language as the user's question.
# The user's message is:
'''
else:
enriched = system_prompt
pipe = load_pipeline(model_name)
prompt = format_conversation(history, enriched, pipe.tokenizer)
prompt_debug = f"\n\n--- Prompt Preview ---\n```\n{prompt}\n```"
streamer = TextIteratorStreamer(pipe.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
gen_thread = threading.Thread(
target=pipe,
args=(prompt,),
kwargs={
'max_new_tokens': max_tokens,
'temperature': temperature,
'top_k': top_k,
'top_p': top_p,
'repetition_penalty': repeat_penalty,
'streamer': streamer,
'return_full_text': False,
}
)
gen_thread.start()
# Buffers for thought vs answer
thought_buf = ''
answer_buf = ''
in_thought = False
# Stream tokens
for chunk in streamer:
if cancel_event.is_set():
break
text = chunk
# Detect start of thinking
if not in_thought and '<think>' in text:
in_thought = True
# Insert thought placeholder
history.append({
'role': 'assistant',
'content': '',
'metadata': {'title': '💭 Thought'}
})
# Capture after opening tag
after = text.split('<think>', 1)[1]
thought_buf += after
# If closing tag in same chunk
if '</think>' in thought_buf:
before, after2 = thought_buf.split('</think>', 1)
history[-1]['content'] = before.strip()
in_thought = False
# Start answer buffer
answer_buf = after2
history.append({'role': 'assistant', 'content': answer_buf})
else:
history[-1]['content'] = thought_buf
yield history, debug
continue
# Continue thought streaming
if in_thought:
thought_buf += text
if '</think>' in thought_buf:
before, after2 = thought_buf.split('</think>', 1)
history[-1]['content'] = before.strip()
in_thought = False
# Start answer buffer
answer_buf = after2
history.append({'role': 'assistant', 'content': answer_buf})
else:
history[-1]['content'] = thought_buf
yield history, debug
continue
# Stream answer
if not answer_buf:
history.append({'role': 'assistant', 'content': ''})
answer_buf += text
history[-1]['content'] = answer_buf
yield history, debug
gen_thread.join()
yield history, debug + prompt_debug
except Exception as e:
history.append({'role': 'assistant', 'content': f"Error: {e}"})
yield history, debug
finally:
gc.collect()
def cancel_generation():
cancel_event.set()
return 'Generation cancelled.'
def update_default_prompt(enable_search):
return f"You are a helpful assistant."
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
gr.Markdown("Interact with the model. Select parameters and chat below.")
with gr.Row():
with gr.Column(scale=3):
model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
search_chk = gr.Checkbox(label="Enable Web Search", value=True)
sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
gr.Markdown("### Generation Parameters")
max_tok = gr.Slider(64, 16384, value=2048, step=32, label="Max Tokens")
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
rp = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
gr.Markdown("### Web Search Settings")
mr = gr.Number(value=6, precision=0, label="Max Results")
mc = gr.Number(value=600, precision=0, label="Max Chars/Result")
st = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, value=5.0, label="Search Timeout (s)")
clr = gr.Button("Clear Chat")
cnl = gr.Button("Cancel Generation")
with gr.Column(scale=7):
chat = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Type your message and press Enter...")
dbg = gr.Markdown()
search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
cnl.click(fn=cancel_generation, outputs=dbg)
txt.submit(fn=chat_response,
inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
model_dd, max_tok, temp, k, p, rp, st],
outputs=[chat, dbg])
demo.launch()
|