|
import spaces |
|
import gradio as gr |
|
from gradio import update |
|
from functools import lru_cache |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from opencc import OpenCC |
|
|
|
|
|
cc = OpenCC('s2t') |
|
|
|
|
|
MODEL_LIST = [ |
|
"liswei/Taiwan-ELM-270M", |
|
"Mxode/SmolLM-Chinese-180M", |
|
"flyingfishinwater/chinese-baby-llama2", |
|
"unsloth/gemma-3-1b-pt", |
|
"ckiplab/gpt2-tiny-chinese", |
|
"ckiplab/gpt2-base-chinese", |
|
"liswei/Taiwan-ELM-1_1B", |
|
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", |
|
"benchang1110/Taiwan-tinyllama-v1.0-base", |
|
"lianghsun/Llama-3.2-Taiwan-3B", |
|
"twinkle-ai/Llama-3.2-3B-F1-Instruct", |
|
"Epiculous/Violet_Twilight-v0.2", |
|
] |
|
|
|
@lru_cache(maxsize=None) |
|
def get_pipeline(model_name): |
|
tok = AutoTokenizer.from_pretrained(model_name) |
|
mdl = AutoModelForCausalLM.from_pretrained( |
|
model_name, weights_only=False, trust_remote_code=True |
|
) |
|
mdl.to("cuda") |
|
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0) |
|
|
|
@spaces.GPU |
|
def suggest_next(text, model_name, k, m): |
|
""" |
|
使用 Beam Search 產生 m 條候選,並一次更新候選列表,轉繁體並去除重複。 |
|
""" |
|
gen_pipe = get_pipeline(model_name) |
|
outs = gen_pipe( |
|
text, |
|
max_new_tokens=k, |
|
num_beams=m, |
|
num_return_sequences=m, |
|
do_sample=False, |
|
early_stopping=True |
|
) |
|
|
|
suggestions = [out["generated_text"][len(text):].strip() for out in outs] |
|
suggestions = [s for s in suggestions if s] |
|
suggestions = [cc.convert(s) for s in suggestions] |
|
|
|
unique_suggestions = [] |
|
for s in suggestions: |
|
if s not in unique_suggestions: |
|
unique_suggestions.append(s) |
|
|
|
return update(choices=unique_suggestions, value=None) |
|
|
|
|
|
def append_suggestion(current, choice): |
|
if choice is None: |
|
return current |
|
|
|
return current + choice |
|
|
|
|
|
custom_css = """ |
|
#suggestions-bar { |
|
width: 100%; |
|
margin-bottom: 8px; |
|
} |
|
#suggestions-bar .candidate-list { |
|
display: flex; |
|
gap: 8px; |
|
background: #fff; |
|
border: 1px solid #999; |
|
border-radius: 4px; |
|
padding: 6px; |
|
overflow-x: auto; |
|
white-space: nowrap; |
|
} |
|
#suggestions-bar .candidate-list label { |
|
cursor: pointer; |
|
padding: 6px 10px; |
|
font-size: 16px; |
|
} |
|
#suggestions-bar .candidate-list label:hover { |
|
background: #f5f5f5; |
|
} |
|
#suggestions-bar .candidate-list input[type=radio]:checked + label { |
|
background: #e6f7ff; |
|
border: 1px solid #1890ff; |
|
} |
|
#input-box textarea { |
|
width: 100%; |
|
font-size: 16px; |
|
padding: 6px; |
|
box-sizing: border-box; |
|
overflow: hidden; |
|
resize: none; |
|
} |
|
#predict-button { |
|
margin-top: 8px; |
|
width: 100%; |
|
} |
|
/* 手機響應式 */ |
|
@media only screen and (max-width: 600px) { |
|
#suggestions-bar .candidate-list label { |
|
padding: 8px; |
|
font-size: 18px; |
|
} |
|
#predict-button { |
|
font-size: 18px; |
|
} |
|
} |
|
""" |
|
|
|
|
|
auto_height_js = """ |
|
<script> |
|
window.addEventListener('load', () => { |
|
const textarea = document.querySelector('#input-box textarea'); |
|
if (!textarea) return; |
|
textarea.style.height = 'auto'; |
|
textarea.addEventListener('input', function() { |
|
this.style.height = 'auto'; |
|
this.style.height = this.scrollHeight + 'px'; |
|
}); |
|
}); |
|
</script> |
|
""" |
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.HTML(auto_height_js) |
|
gr.Markdown( |
|
"## 🇹🇼 繁體中文 IME 加速器 \ |
|
" |
|
"結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。" |
|
) |
|
|
|
with gr.Column(): |
|
suggestions = gr.Radio( |
|
[], label="", interactive=True, type="value", |
|
elem_id="suggestions-bar", elem_classes="candidate-list" |
|
) |
|
input_text = gr.Textbox( |
|
label="", placeholder="請輸入拼音或文字…", |
|
lines=1, max_lines=20, elem_id="input-box" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
auto_predict = gr.Checkbox( |
|
value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict" |
|
) |
|
predict_button = gr.Button( |
|
"預測", elem_id="predict-button" |
|
) |
|
|
|
with gr.Accordion("進階設定", open=False): |
|
model_selector = gr.Dropdown( |
|
MODEL_LIST, value=MODEL_LIST[0], label="模型" |
|
) |
|
k_slider = gr.Slider( |
|
minimum=1, maximum=50, step=1, value=1, label="K(最大新詞元數)" |
|
) |
|
m_slider = gr.Slider( |
|
minimum=1, maximum=30, step=1, value=6, label="M(建議數/Beam 數)" |
|
) |
|
|
|
|
|
predict_button.click( |
|
fn=suggest_next, |
|
inputs=[input_text, model_selector, k_slider, m_slider], |
|
outputs=suggestions, |
|
) |
|
input_text.change( |
|
fn=lambda txt, mdl, k, m, auto: suggest_next(txt, mdl, k, m) if auto else update(choices=[], value=None), |
|
inputs=[input_text, model_selector, k_slider, m_slider, auto_predict], |
|
outputs=suggestions, |
|
) |
|
suggestions.change( |
|
fn=append_suggestion, |
|
inputs=[input_text, suggestions], |
|
outputs=input_text, |
|
) |
|
|
|
demo.launch() |