from diffusers import StableDiffusionPipeline import gradio as gr import torch import os from huggingface_hub import login # 3. Login to Hugging Face (replace YOUR_HF_TOKEN with your actual token) login(token=os.getenv("HF_TOKEN")) # 4. Load private model using your token model_id = "Lookingsoft-team/Text_to_Image_Diffusion" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16 # smaller memory ).to(device) def generate_image(prompt): image = pipe(prompt).images[0] return image iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter prompt"), outputs=gr.Image(type="pil"), title="Private Stable Diffusion Demo" ) iface.launch(share=True)