import gradio as gr from sentence_transformers import SentenceTransformer import pandas as pd model = SentenceTransformer('all-MiniLM-L6-v2') sentences = [ "This is the first sentence.", "Here is another sentence for embedding.", "Sentence Transformers are powerful for semantic search." ] embeddings = model.encode(sentences) df = pd.DataFrame({'sentence': sentences, 'embedding': list(embeddings)}) df.to_csv('sentence_embeddings.csv', index=False) def greet(name): return "Hello " + name + "!!" demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()