CancerSkinTest3 / app.py
LoloSemper's picture
Update app.py
f3d9a1b verified
raw
history blame
5.04 kB
import torch
from transformers import ViTImageProcessor, ViTForImageClassification
from fastai.learner import load_learner
from fastai.vision.core import PILImage
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import io
import base64
# --- Cargar modelo ViT preentrenado fine‑tuned HAM10000 ---
TF_MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
feature_extractor_tf = ViTImageProcessor.from_pretrained(TF_MODEL_NAME)
model_tf_vit = ViTForImageClassification.from_pretrained(TF_MODEL_NAME)
model_tf_vit.eval()
# 🔹 Cargar modelo ViT base
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
model_vit.eval()
# 🔹 Cargar modelos Fast.ai locales
model_malignancy = load_learner("ada_learn_malben.pkl")
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
# Clases estándar de HAM10000
CLASSES = [
"Queratosis actínica / Bowen", "Carcinoma células basales",
"Lesión queratósica benigna", "Dermatofibroma",
"Melanoma maligno", "Nevus melanocítico", "Lesión vascular"
]
RISK_LEVELS = {
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0},
5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
}
MALIGNANT_INDICES = [0, 1, 4] # akiec, bcc, melanoma
def analizar_lesion_combined(img):
img_fastai = PILImage.create(img)
# ViT base
inputs = feature_extractor(img, return_tensors="pt")
with torch.no_grad():
outputs = model_vit(**inputs)
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
idx_vit = int(np.argmax(probs_vit))
class_vit = CLASSES[idx_vit]
conf_vit = probs_vit[idx_vit]
# Fast.ai modelos
_, _, probs_mal = model_malignancy.predict(img_fastai)
prob_malign = float(probs_mal[1])
pred_fast_type, _, _ = model_norm2000.predict(img_fastai)
# ViT pre-trained fine-tuned (último modelo recomendado)
inputs_tf = feature_extractor_tf(img, return_tensors="pt")
with torch.no_grad():
outputs_tf = model_tf_vit(**inputs_tf)
probs_tf = outputs_tf.logits.softmax(dim=-1).cpu().numpy()[0]
idx_tf = int(np.argmax(probs_tf))
class_tf_model = CLASSES[idx_tf]
conf_tf = probs_tf[idx_tf]
mal_tf = "Maligno" if idx_tf in MALIGNANT_INDICES else "Benigno"
# Gráfico ViT base
colors = [RISK_LEVELS[i]['color'] for i in range(7)]
fig, ax = plt.subplots(figsize=(8, 3))
ax.bar(CLASSES, probs_vit*100, color=colors)
ax.set_title("Probabilidad ViT base por tipo de lesión")
ax.set_ylabel("Probabilidad (%)")
ax.set_xticks(np.arange(len(CLASSES)))
ax.set_xticklabels(CLASSES, rotation=45, ha='right')
ax.grid(axis='y', alpha=0.2)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close(fig)
html_chart = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" style="max-width:100%"/>'
informe = f"""
<div style="font-family:sans-serif; max-width:800px; margin:auto">
<h2>🧪 Diagnóstico por múltiples modelos de IA</h2>
<table style="width:100%; font-size:16px; border-collapse:collapse">
<tr><th>Modelo</th><th>Resultado</th><th>Confianza</th></tr>
<tr><td>🧠 ViT base</td><td><b>{class_vit}</b></td><td>{conf_vit:.1%}</td></tr>
<tr><td>🧬 Fast.ai (tipo)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{'Maligno' if prob_malign > 0.5 else 'Benigno'}</b></td><td>{prob_malign:.1%}</td></tr>
<tr><td>🌟 ViT fined‑tuned (HAM10000)</td><td><b>{mal_tf} ({class_tf_model})</b></td><td>{conf_tf:.1%}</td></tr>
</table><br>
<b>🩺 Recomendación automática:</b><br>
"""
risk = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
if prob_malign > 0.7 or risk > 0.6:
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
elif prob_malign > 0.4 or risk > 0.4:
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
elif risk > 0.2:
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada en 2-4 semanas"
else:
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
informe += "</div>"""
return informe, html_chart
demo = gr.Interface(
fn=analizar_lesion_combined,
inputs=gr.Image(type="pil"),
outputs=[gr.HTML(label="Informe"), gr.HTML(label="Gráfico ViT base")],
title="Detector de Lesiones Cutáneas (ViT + Fast.ai)",
)
if __name__ == "__main__":
demo.launch()