Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,13 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer
|
4 |
import torch
|
5 |
-
from threading import Thread
|
6 |
import os
|
7 |
-
import asyncio
|
8 |
-
import time
|
9 |
-
from datetime import datetime
|
10 |
-
import gc
|
11 |
-
|
12 |
-
# Global dictionary to store preloaded models and tokenizers
|
13 |
-
LOADED_MODELS = {}
|
14 |
-
LOADED_TOKENIZERS = {}
|
15 |
-
# Lock for thread-safe model access
|
16 |
-
MODEL_LOCK = Lock()
|
17 |
-
# Event to signal shutdown
|
18 |
-
SHUTDOWN_EVENT = Event()
|
19 |
-
|
20 |
-
def clear_memory():
|
21 |
-
"""Clear GPU and CPU memory"""
|
22 |
-
torch.cuda.empty_cache()
|
23 |
-
gc.collect()
|
24 |
-
|
25 |
-
def load_single_model(model_name):
|
26 |
-
"""Load a single model and tokenizer"""
|
27 |
-
try:
|
28 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Loading {model_name}...")
|
29 |
-
|
30 |
-
# Load model to CPU with bfloat16 to save memory
|
31 |
-
model = AutoModelForCausalLM.from_pretrained(
|
32 |
-
model_name,
|
33 |
-
torch_dtype=torch.bfloat16,
|
34 |
-
trust_remote_code=True,
|
35 |
-
token=os.environ.get("token"),
|
36 |
-
)
|
37 |
-
|
38 |
-
# Load tokenizer
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
40 |
-
model_name,
|
41 |
-
trust_remote_code=True,
|
42 |
-
token=os.environ.get("token")
|
43 |
-
)
|
44 |
-
tokenizer.eos_token = "<|im_end|>"
|
45 |
-
|
46 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Successfully loaded {model_name}")
|
47 |
-
return model, tokenizer
|
48 |
-
except Exception as e:
|
49 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Failed to load {model_name}: {e}")
|
50 |
-
return None, None
|
51 |
-
|
52 |
-
def preload_models(model_choices):
|
53 |
-
"""Preload all models to CPU at startup"""
|
54 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Preloading models to CPU...")
|
55 |
-
|
56 |
-
with MODEL_LOCK:
|
57 |
-
for model_name in model_choices:
|
58 |
-
model, tokenizer = load_single_model(model_name)
|
59 |
-
if model is not None and tokenizer is not None:
|
60 |
-
LOADED_MODELS[model_name] = model
|
61 |
-
LOADED_TOKENIZERS[model_name] = tokenizer
|
62 |
-
|
63 |
-
def reload_models_task(model_choices):
|
64 |
-
"""Background task to reload models every 15 minutes"""
|
65 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Starting model reload task...")
|
66 |
-
|
67 |
-
while not SHUTDOWN_EVENT.is_set():
|
68 |
-
# Wait for 15 minutes (900 seconds)
|
69 |
-
if SHUTDOWN_EVENT.wait(240):
|
70 |
-
# If event is set, exit the loop
|
71 |
-
break
|
72 |
-
|
73 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Starting periodic model reload...")
|
74 |
-
|
75 |
-
# Create temporary dictionaries for new models
|
76 |
-
new_models = {}
|
77 |
-
new_tokenizers = {}
|
78 |
-
|
79 |
-
# Load new models
|
80 |
-
for model_name in model_choices:
|
81 |
-
model, tokenizer = load_single_model(model_name)
|
82 |
-
if model is not None and tokenizer is not None:
|
83 |
-
new_models[model_name] = model
|
84 |
-
new_tokenizers[model_name] = tokenizer
|
85 |
-
|
86 |
-
# Replace old models with new ones atomically
|
87 |
-
with MODEL_LOCK:
|
88 |
-
# Store old models for cleanup
|
89 |
-
old_models = LOADED_MODELS.copy()
|
90 |
-
old_tokenizers = LOADED_TOKENIZERS.copy()
|
91 |
-
|
92 |
-
# Clear the dictionaries
|
93 |
-
LOADED_MODELS.clear()
|
94 |
-
LOADED_TOKENIZERS.clear()
|
95 |
-
|
96 |
-
# Update with new models
|
97 |
-
LOADED_MODELS.update(new_models)
|
98 |
-
LOADED_TOKENIZERS.update(new_tokenizers)
|
99 |
-
|
100 |
-
# Delete old model references
|
101 |
-
del old_models
|
102 |
-
del old_tokenizers
|
103 |
-
|
104 |
-
# Clear memory
|
105 |
-
clear_memory()
|
106 |
-
|
107 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Model reload completed")
|
108 |
|
109 |
@spaces.GPU()
|
110 |
-
def
|
111 |
-
""
|
112 |
-
with MODEL_LOCK:
|
113 |
-
if model_name not in LOADED_MODELS:
|
114 |
-
raise ValueError(f"Model {model_name} not found in preloaded models")
|
115 |
-
|
116 |
-
# Get model and tokenizer references
|
117 |
-
model = LOADED_MODELS[model_name]
|
118 |
-
tokenizer = LOADED_TOKENIZERS[model_name]
|
119 |
-
|
120 |
-
# Create pipeline with the GPU model
|
121 |
-
pipe = pipeline(
|
122 |
-
"text-generation",
|
123 |
-
model=model,
|
124 |
-
tokenizer=tokenizer,
|
125 |
-
torch_dtype=torch.bfloat16,
|
126 |
-
device="cuda"
|
127 |
-
)
|
128 |
-
|
129 |
-
return pipe, model
|
130 |
-
|
131 |
@spaces.GPU(duration=45)
|
132 |
def generate(
|
133 |
message,
|
@@ -141,32 +21,27 @@ def generate(
|
|
141 |
max_new_tokens=256,
|
142 |
):
|
143 |
try:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
148 |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n"
|
149 |
for (user_turn, assistant_turn) in history:
|
150 |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n"
|
151 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
152 |
|
153 |
-
streamer = TextIteratorStreamer(
|
154 |
-
pipe.tokenizer,
|
155 |
-
timeout=240.0,
|
156 |
-
skip_prompt=True,
|
157 |
-
skip_special_tokens=True
|
158 |
-
)
|
159 |
-
|
160 |
generation_kwargs = dict(
|
161 |
-
text_inputs=prompt,
|
162 |
-
streamer=streamer,
|
163 |
-
max_new_tokens=max_new_tokens,
|
164 |
-
do_sample=True,
|
165 |
-
top_p=top_p,
|
166 |
-
min_p=min_p,
|
167 |
-
top_k=top_k,
|
168 |
-
temperature=temperature,
|
169 |
-
num_beams=1,
|
170 |
repetition_penalty=1.1
|
171 |
)
|
172 |
|
@@ -177,65 +52,28 @@ def generate(
|
|
177 |
for chunk in streamer:
|
178 |
outputs.append(chunk)
|
179 |
yield "".join(outputs)
|
180 |
-
|
181 |
-
# Move model back to CPU after inference to free GPU memory
|
182 |
-
gpu_model.to("cpu")
|
183 |
-
torch.cuda.empty_cache()
|
184 |
-
|
185 |
except StopAsyncIteration:
|
186 |
print("Stream stopped unexpectedly.")
|
187 |
yield "".join(outputs)
|
188 |
except Exception as e:
|
189 |
print(f"An error occurred: {e}")
|
190 |
-
yield
|
191 |
-
finally:
|
192 |
-
# Ensure model is moved back to CPU even if there's an error
|
193 |
-
if 'gpu_model' in locals():
|
194 |
-
gpu_model.to("cpu")
|
195 |
-
torch.cuda.empty_cache()
|
196 |
-
|
197 |
-
# Define model choices
|
198 |
-
model_choices = [
|
199 |
-
"Locutusque/Hercules-6.1-Llama-3.1-8B",
|
200 |
-
"Locutusque/liberalis-cogitator-mistral-nemo-2407",
|
201 |
-
"Locutusque/lmsys-llama-3.2-3b"
|
202 |
-
]
|
203 |
-
|
204 |
-
# Preload all models to CPU at startup
|
205 |
-
preload_models(model_choices)
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
reload_thread.start()
|
210 |
-
|
211 |
-
# Create Gradio interface
|
212 |
g = gr.ChatInterface(
|
213 |
fn=generate,
|
214 |
additional_inputs=[
|
215 |
-
gr.components.Dropdown(
|
216 |
-
|
217 |
-
label="Model",
|
218 |
-
value=model_choices[0],
|
219 |
-
interactive=True
|
220 |
-
),
|
221 |
-
gr.components.Textbox(
|
222 |
-
lines=2,
|
223 |
-
label="System Prompt",
|
224 |
-
value="You are a sentient, super intelligent AI developed by a man named Locutusque."
|
225 |
-
),
|
226 |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"),
|
227 |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
|
228 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"),
|
229 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"),
|
230 |
-
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"),
|
231 |
],
|
232 |
title="Locutusque's Language Models",
|
233 |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
|
234 |
)
|
235 |
-
|
236 |
if __name__ == "__main__":
|
237 |
-
|
238 |
-
g.launch()
|
239 |
-
finally:
|
240 |
-
# Signal the reload thread to stop when the app shuts down
|
241 |
-
SHUTDOWN_EVENT.set()
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer
|
4 |
import torch
|
5 |
+
from threading import Thread
|
6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@spaces.GPU()
|
9 |
+
def load_model(model_name):
|
10 |
+
return pipeline("text-generation", model=model_name, device_map="cuda", torch_dtype=torch.bfloat16, trust_remote_code=True, token=os.environ["token"], use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
@spaces.GPU(duration=45)
|
12 |
def generate(
|
13 |
message,
|
|
|
21 |
max_new_tokens=256,
|
22 |
):
|
23 |
try:
|
24 |
+
pipe = load_model(model_name)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=os.environ["token"])
|
26 |
+
tokenizer.eos_token = "<|im_end|>"
|
27 |
+
print(tokenizer)
|
28 |
+
pipe.tokenizer = tokenizer
|
29 |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n"
|
30 |
for (user_turn, assistant_turn) in history:
|
31 |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n"
|
32 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
33 |
|
34 |
+
streamer = TextIteratorStreamer(pipe.tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
generation_kwargs = dict(
|
36 |
+
text_inputs=prompt,
|
37 |
+
streamer=streamer,
|
38 |
+
max_new_tokens=max_new_tokens,
|
39 |
+
do_sample=True,
|
40 |
+
top_p=top_p,
|
41 |
+
min_p=min_p,
|
42 |
+
top_k=top_k,
|
43 |
+
temperature=temperature,
|
44 |
+
num_beams=1,
|
45 |
repetition_penalty=1.1
|
46 |
)
|
47 |
|
|
|
52 |
for chunk in streamer:
|
53 |
outputs.append(chunk)
|
54 |
yield "".join(outputs)
|
|
|
|
|
|
|
|
|
|
|
55 |
except StopAsyncIteration:
|
56 |
print("Stream stopped unexpectedly.")
|
57 |
yield "".join(outputs)
|
58 |
except Exception as e:
|
59 |
print(f"An error occurred: {e}")
|
60 |
+
yield "An error occurred during generation."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
model_choices = ["Locutusque/Hercules-6.1-Llama-3.1-8B", "Locutusque/liberalis-cogitator-mistral-nemo-2407", "Locutusque/Hercules-6.9-Llama-3.1-8B", "Locutusque/lmsys-llama-3.2-3b", "Locutusque/CollectiveLM-Falcon-3-7B", "Locutusque/StockQwen-2.5-7B"]
|
63 |
+
# What at the best options?
|
|
|
|
|
|
|
64 |
g = gr.ChatInterface(
|
65 |
fn=generate,
|
66 |
additional_inputs=[
|
67 |
+
gr.components.Dropdown(choices=model_choices, label="Model", value=model_choices[0], interactive=True),
|
68 |
+
gr.components.Textbox(lines=2, label="System Prompt", value="You are a sentient, super intelligent AI developed by a man named Locutusque."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"),
|
70 |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
|
71 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"),
|
72 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"),
|
73 |
+
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"),
|
74 |
],
|
75 |
title="Locutusque's Language Models",
|
76 |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
|
77 |
)
|
|
|
78 |
if __name__ == "__main__":
|
79 |
+
g.launch()
|
|
|
|
|
|
|
|