Spaces:
Running
Running
Upload Falcon_Ai71_Usage.ipynb
Browse files
Operational_Instructions/Falcon_Ai71_Usage.ipynb
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"!pip install ai71 python-dotenv"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import os\n",
|
19 |
+
"import time\n",
|
20 |
+
"from ai71 import AI71\n",
|
21 |
+
"from concurrent.futures import ThreadPoolExecutor, as_completed\n",
|
22 |
+
"\n",
|
23 |
+
"# Optinal, but nice way to load environment variables from a .env file\n",
|
24 |
+
"from dotenv import load_dotenv\n",
|
25 |
+
"\n",
|
26 |
+
"load_dotenv()\n",
|
27 |
+
"AI71_API_KEY = os.getenv(\"AI71_API_KEY\")\n",
|
28 |
+
"AI71_BASE_URL = os.getenv(\"AI71_BASE_URL\")\n",
|
29 |
+
"\n",
|
30 |
+
"client = AI71(api_key=AI71_API_KEY, base_url=AI71_BASE_URL)\n",
|
31 |
+
"\n",
|
32 |
+
"def complete(client: AI71, messages: list[dict], model: str = \"tiiuae/falcon3-10b-instruct\", max_tokens: int = 100, n_retries: int = 5):\n",
|
33 |
+
" \"\"\"Runs a single completion request.\n",
|
34 |
+
" Args:\n",
|
35 |
+
" client (AI71): The AI71 client.\n",
|
36 |
+
" messages (list[dict]): List of messages for the request. (a conversation)\n",
|
37 |
+
" model (str): Model to use for completion.\n",
|
38 |
+
" max_tokens (int): Maximum number of tokens to generate.\n",
|
39 |
+
" n_retries (int): Number of retries on failure.\n",
|
40 |
+
" Returns:\n",
|
41 |
+
" dict: The result of the completion request.\n",
|
42 |
+
" \"\"\"\n",
|
43 |
+
" retries = 0\n",
|
44 |
+
" while True:\n",
|
45 |
+
" try:\n",
|
46 |
+
" return client.chat.completions.create(\n",
|
47 |
+
" model=model,\n",
|
48 |
+
" messages=messages,\n",
|
49 |
+
" max_tokens=max_tokens,\n",
|
50 |
+
" )\n",
|
51 |
+
" except Exception as e:\n",
|
52 |
+
" retries += 1\n",
|
53 |
+
" if n_retries < retries:\n",
|
54 |
+
" raise e\n",
|
55 |
+
" print(f\"Retrying for the {retries} time(s)... (error: {e})\")\n",
|
56 |
+
" time.sleep(retries)\n",
|
57 |
+
"\n",
|
58 |
+
"def batch_complete(\n",
|
59 |
+
" client: AI71,\n",
|
60 |
+
" list_of_messages: list[list[dict]],\n",
|
61 |
+
" model: str = \"tiiuae/falcon3-10b-instruct\",\n",
|
62 |
+
" max_tokens: int = 100,\n",
|
63 |
+
" n_retries: int = 5,\n",
|
64 |
+
" n_parallel: int = 10):\n",
|
65 |
+
" \"\"\"Runs a batch of completions in parallel.\n",
|
66 |
+
" Args:\n",
|
67 |
+
" client (AI71): The AI71 client.\n",
|
68 |
+
" list_of_messages (list[list[dict]]): List of messages for each request. (list of conversations)\n",
|
69 |
+
" model (str): Model to use for completion.\n",
|
70 |
+
" max_tokens (int): Maximum number of tokens to generate.\n",
|
71 |
+
" n_retries (int): Number of retries on failure.\n",
|
72 |
+
" n_parallel (int): Number of parallel requests.\n",
|
73 |
+
" Returns:\n",
|
74 |
+
" list: List of results for each request.\n",
|
75 |
+
" \"\"\"\n",
|
76 |
+
"\n",
|
77 |
+
" results = []\n",
|
78 |
+
"\n",
|
79 |
+
" with ThreadPoolExecutor(max_workers=n_parallel) as executor:\n",
|
80 |
+
" # Submit requests\n",
|
81 |
+
" futures = [\n",
|
82 |
+
" executor.submit(complete, client, messages, model, max_tokens, n_retries)\n",
|
83 |
+
" for i, messages in enumerate(list_of_messages)\n",
|
84 |
+
" ]\n",
|
85 |
+
"\n",
|
86 |
+
" # Collect results as they complete\n",
|
87 |
+
" for future in as_completed(futures):\n",
|
88 |
+
" try:\n",
|
89 |
+
" result = future.result()\n",
|
90 |
+
" results.append(result)\n",
|
91 |
+
" except Exception as e:\n",
|
92 |
+
" print(f\"Request failed: {e}\")\n",
|
93 |
+
" results.append(None)\n",
|
94 |
+
"\n",
|
95 |
+
" return results\n",
|
96 |
+
"\n",
|
97 |
+
"# Simple single request:\n",
|
98 |
+
"result = complete(client, [\n",
|
99 |
+
" {\"role\":\"system\",\"content\": \"You are a helpful assistant\"},\n",
|
100 |
+
" {\"role\":\"user\",\"content\":\"What is artificial intelligence?\"}\n",
|
101 |
+
"])\n",
|
102 |
+
"print(result)\n",
|
103 |
+
"\n",
|
104 |
+
"# Run a batch of requests:\n",
|
105 |
+
"results = batch_complete(\n",
|
106 |
+
" client,\n",
|
107 |
+
" [\n",
|
108 |
+
" [\n",
|
109 |
+
" {\"role\":\"system\",\"content\": \"You are a helpful assistant\"},\n",
|
110 |
+
" {\"role\":\"user\",\"content\":\"What is artificial intelligence?\"}\n",
|
111 |
+
" ]\n",
|
112 |
+
" ] * 20,\n",
|
113 |
+
" n_parallel=10,\n",
|
114 |
+
")\n",
|
115 |
+
"results"
|
116 |
+
]
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"metadata": {
|
120 |
+
"kernelspec": {
|
121 |
+
"display_name": ".venv",
|
122 |
+
"language": "python",
|
123 |
+
"name": "python3"
|
124 |
+
},
|
125 |
+
"language_info": {
|
126 |
+
"codemirror_mode": {
|
127 |
+
"name": "ipython",
|
128 |
+
"version": 3
|
129 |
+
},
|
130 |
+
"file_extension": ".py",
|
131 |
+
"mimetype": "text/x-python",
|
132 |
+
"name": "python",
|
133 |
+
"nbconvert_exporter": "python",
|
134 |
+
"pygments_lexer": "ipython3",
|
135 |
+
"version": "3.12.8"
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"nbformat": 4,
|
139 |
+
"nbformat_minor": 2
|
140 |
+
}
|