Littlehongman's picture
feat: add html & references
9c68392
import streamlit as st
import streamlit.components.v1 as components
from PIL import Image
import requests
from predict import generate_text
from model import load_model
from streamlit_image_select import image_select
# Configure Streamlit page
st.set_page_config(page_title="Caption Machine", page_icon="๐Ÿ“ธ")
# Set Session
model, image_transform, tokenizer = load_model()
if 'model' not in st.session_state:
st.session_state['model'] = model
if 'image_transform' not in st.session_state:
st.session_state['image_transform'] = image_transform
if 'tokenizer' not in st.session_state:
st.session_state['tokenizer'] = tokenizer
# Force responsive layout for columns also on mobile
st.write(
"""<style>
[data-testid="column"] {
width: calc(50% - 1rem);
flex: 1 1 calc(50% - 1rem);
min-width: calc(50% - 1rem);
}
.separator {
display: flex;
align-items: center;
text-align: center;
}
.separator::before,
.separator::after {
content: '';
flex: 1;
border-bottom: 1px solid #000;
}
.separator:not(:empty)::before {
margin-right: .25em;
}
.separator:not(:empty)::after {
margin-left: .25em;
}
</style>""",
unsafe_allow_html=True,
)
# Render Streamlit page
st.title("Image Captioner")
st.markdown(
"This app utilizes OpenAI's [GPT-2](https://openai.com/research/better-language-models) and [CLIP](https://openai.com/research/clip) models to generate image captions. The model architecture was inspired by [ClipCap: CLIP Prefix for Image Captioning](https://arxiv.org/abs/2111.09734), which uses CLIP encoding as prefix and fine-tune GPT-2 model to generate the caption."
)
# Select image or upload image
select_file = image_select(
label="Select a photo:",
images=[
"https://farm5.staticflickr.com/4084/5093294428_2f50d54acb_z.jpg",
"https://farm8.staticflickr.com/7044/6855243647_cd204d079c_z.jpg",
"http://farm4.staticflickr.com/3016/2650267987_f478c8d682_z.jpg",
"https://farm8.staticflickr.com/7249/6913786280_c145ecc433_z.jpg",
],
# captions=["A cat", "Another cat", "Oh look, a cat!", "Guess what, a cat..."],
)
st.markdown("<div class='separator'>Or</div>", unsafe_allow_html=True)
upload_file = st.file_uploader("Upload an image:", type=['png','jpg','jpeg'])
# Checking the Format of the page
if upload_file or select_file:
img = None
if upload_file:
img = Image.open(upload_file)
elif select_file:
# st.text(select_file)
img = Image.open(requests.get(select_file, stream=True).raw)
st.image(img)
# st.write("Image Uploaded Successfully")
# gpt_model, tokenizer = load_gpt_model()
with st.spinner('Generating caption...'):
caption = generate_text(st.session_state['model'], img, st.session_state['tokenizer'], st.session_state['image_transform'])
st.success(f"Result: {caption}")
# Model information
with st.expander("See model architecture"):
st.markdown(
"""
Steps:
1. Feed image into CLIP Image Encoder to get image embedding
2. image embedding into text embedding shape
3. Feed Text into GPT-2 Text Embedder to get a text embedding
4. Concatenate two embeddings and feed into GPT-2 Attention Layers
""")
st.write(" \nModel Architecture: ")
model_img = Image.open('./model.png')
st.image(model_img, width=450)