LinkLinkWu's picture
Update func.py
8602bc9 verified
"""
* **Single** `analyze_sentiment` implementation – no more duplicates.
* Returns **label string by default**, optional probability via `return_prob`.
* Threshold lowered to **0.50** and Neutral treated as Positive.
* Helper pipelines cached at module level.
"""
from __future__ import annotations
from typing import List, Tuple
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
)
from bs4 import BeautifulSoup
import requests
# ---------------------------------------------------------------------------
# Model identifiers (Hugging Face)
# ---------------------------------------------------------------------------
SENTIMENT_MODEL_ID = "LinkLinkWu/Boss_Stock_News_Analysis" # LABEL_0 = Negative, LABEL_1 = Positive
NER_MODEL_ID = "dslim/bert-base-NER"
# ---------------------------------------------------------------------------
# Pipeline singletons – loaded once on first import
# ---------------------------------------------------------------------------
# Sentiment
_sent_tok = AutoTokenizer.from_pretrained(SENTIMENT_MODEL_ID)
_sent_model = AutoModelForSequenceClassification.from_pretrained(SENTIMENT_MODEL_ID)
sentiment_pipeline = pipeline(
"text-classification",
model=_sent_model,
tokenizer=_sent_tok,
return_all_scores=True,
)
# NER
_ner_tok = AutoTokenizer.from_pretrained(NER_MODEL_ID)
_ner_model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_ID)
ner_pipeline = pipeline(
"ner",
model=_ner_model,
tokenizer=_ner_tok,
grouped_entities=True,
)
# ---------------------------------------------------------------------------
# Sentiment helpers
# ---------------------------------------------------------------------------
_POSITIVE_RAW = "LABEL_1" # positive class id in model output
_NEUTRAL_RAW = "NEUTRAL" # some models add a neutral class
_SINGLE_THRESHOLD = 0.50 # ≥50% positive prob → Positive
_LABEL_NEG = "Negative"
_LABEL_POS = "Positive"
_LABEL_UNK = "Unknown"
def analyze_sentiment(
text: str,
*,
pipe=None,
threshold: float = _SINGLE_THRESHOLD,
return_prob: bool = False,
):
"""Classify *text* as Positive / Negative.
Parameters
----------
text : str
Input sentence (e.g. news headline).
pipe : transformers.Pipeline, optional
Custom sentiment pipeline; defaults to module-level singleton.
threshold : float, default 0.50
Positive-probability cut-off.
return_prob : bool, default False
If *True*, returns ``(label, positive_probability)`` tuple;
otherwise returns just the label string.
Notes
-----
* When the underlying model emits *NEUTRAL*, we treat it the same
as *Positive* – finance headlines often sound cautious.
* Function never raises; on failure returns ``"Unknown"`` (or
``("Unknown", 0.0)`` when *return_prob* is *True*).
"""
try:
s_pipe = pipe or sentiment_pipeline
scores = s_pipe(text, truncation=True)[0] # list[dict]
score_map = {item["label"].upper(): item["score"] for item in scores}
pos_prob = score_map.get(_POSITIVE_RAW, 0.0)
if _NEUTRAL_RAW in score_map: # treat Neutral as Positive
pos_prob = max(pos_prob, score_map[_NEUTRAL_RAW])
label = _LABEL_POS if pos_prob >= threshold else _LABEL_NEG
return (label, pos_prob) if return_prob else label
except Exception:
return (_LABEL_UNK, 0.0) if return_prob else _LABEL_UNK
# ---------------------------------------------------------------------------
# Web-scraping helper (Finviz)
# ---------------------------------------------------------------------------
def fetch_news(ticker: str, max_items: int = 30) -> List[dict]:
"""Return up to *max_items* latest Finviz headlines for *ticker*.
Result format:
``[{'title': str, 'link': str}, ...]``
"""
try:
url = f"https://finviz.com/quote.ashx?t={ticker}"
headers = {
"User-Agent": "Mozilla/5.0",
"Accept": "text/html",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://finviz.com/",
"Connection": "keep-alive",
}
r = requests.get(url, headers=headers, timeout=10)
if r.status_code != 200:
return []
soup = BeautifulSoup(r.text, "html.parser")
if ticker.upper() not in (soup.title.text if soup.title else "").upper():
return [] # redirected / placeholder page
table = soup.find(id="news-table")
if table is None:
return []
headlines: List[dict] = []
for row in table.find_all("tr")[:max_items]:
link_tag = row.find("a")
if link_tag:
headlines.append(
{"title": link_tag.text.strip(), "link": link_tag["href"]}
)
return headlines
except Exception:
return []
# ---------------------------------------------------------------------------
# Named-entity extraction helper
# ---------------------------------------------------------------------------
def extract_org_entities(text: str, pipe=None, max_entities: int = 5) -> List[str]:
"""Extract *ORG* tokens (upper-cased) from *text*.
Returns at most *max_entities* unique ticker-like strings suitable
for Finviz / Yahoo queries.
"""
try:
ner_pipe = pipe or ner_pipeline
entities = ner_pipe(text)
orgs: List[str] = []
for ent in entities:
if ent.get("entity_group") == "ORG":
token = ent["word"].replace("##", "").strip().upper()
if token and token not in orgs:
orgs.append(token)
if len(orgs) >= max_entities:
break
return orgs
except Exception:
return []
# ---------------------------------------------------------------------------
# Public accessors (legacy compatibility)
# ---------------------------------------------------------------------------
def get_sentiment_pipeline():
"""Return the module-level sentiment pipeline singleton."""
return sentiment_pipeline
def get_ner_pipeline():
"""Return the module-level NER pipeline singleton."""
return ner_pipeline