Spaces:
Sleeping
Sleeping
from typing import List, Tuple | |
from transformers import ( | |
pipeline, | |
AutoTokenizer, | |
AutoModelForSequenceClassification, | |
AutoModelForTokenClassification, | |
) | |
from bs4 import BeautifulSoup | |
import requests | |
# --------------------------------------------------------------------------- | |
# Model identifiers | |
# --------------------------------------------------------------------------- | |
SENTIMENT_MODEL_ID = "LinkLinkWu/Stock_Analysis_Test_Ahamed" | |
NER_MODEL_ID = "dslim/bert-base-NER" | |
# --------------------------------------------------------------------------- | |
# Eager initialisation of Hugging Face pipelines (shared singletons) | |
# --------------------------------------------------------------------------- | |
sentiment_tokenizer = AutoTokenizer.from_pretrained(SENTIMENT_MODEL_ID) | |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(SENTIMENT_MODEL_ID) | |
sentiment_pipeline = pipeline( | |
"sentiment-analysis", | |
model=sentiment_model, | |
tokenizer=sentiment_tokenizer, | |
) | |
ner_tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_ID) | |
ner_model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_ID) | |
ner_pipeline = pipeline( | |
"ner", | |
model=ner_model, | |
tokenizer=ner_tokenizer, | |
grouped_entities=True, | |
) | |
# --------------------------------------------------------------------------- | |
# Web‑scraping helper | |
# --------------------------------------------------------------------------- | |
def fetch_news(ticker: str) -> List[dict]: | |
"""Return up to 30 latest Finviz headlines for *ticker* (title & link). | |
Empty list on network / parsing errors or if Finviz redirects to a generic | |
page (e.g. wrong ticker). | |
""" | |
try: | |
url = f"https://finviz.com/quote.ashx?t={ticker}" | |
headers = { | |
"User-Agent": "Mozilla/5.0", | |
"Accept": "text/html", | |
"Accept-Language": "en-US,en;q=0.5", | |
"Referer": "https://finviz.com/", | |
"Connection": "keep-alive", | |
} | |
r = requests.get(url, headers=headers, timeout=10) | |
if r.status_code != 200: | |
return [] | |
soup = BeautifulSoup(r.text, "html.parser") | |
if ticker.upper() not in (soup.title.text if soup.title else "").upper(): | |
return [] # Finviz placeholder page | |
table = soup.find(id="news-table") | |
if table is None: | |
return [] | |
news: List[dict] = [] | |
for row in table.find_all("tr")[:30]: | |
link_tag = row.find("a") | |
if link_tag: | |
news.append({"title": link_tag.get_text(strip=True), "link": link_tag["href"]}) | |
return news | |
except Exception: | |
return [] | |
# --------------------------------------------------------------------------- | |
# Sentiment helpers | |
# --------------------------------------------------------------------------- | |
_POSITIVE = "positive" | |
_DEFAULT_THRESHOLD = 0.55 # per‑headline probability cut‑off | |
def analyze_sentiment( | |
text: str, | |
pipe=None, | |
threshold: float = _DEFAULT_THRESHOLD, | |
) -> Tuple[str, float]: | |
"""Classify *text* and return ``(label, positive_probability)``. | |
* Binary label (*Positive* / *Negative*) is determined by comparing the | |
*positive* probability with *threshold*. | |
* Neutral headlines are mapped to *Negative* by design. | |
* On any internal error → ("Unknown", 0.0). | |
""" | |
try: | |
sentiment_pipe = pipe or sentiment_pipeline | |
scores = sentiment_pipe(text, return_all_scores=True, truncation=True)[0] | |
pos_prob = 0.0 | |
for item in scores: | |
if item["label"].lower() == _POSITIVE: | |
pos_prob = item["score"] | |
break | |
label = "Positive" if pos_prob >= threshold else "Negative" | |
return label, pos_prob | |
except Exception: | |
return "Unknown", 0.0 | |
# --------------------------------------------------------------------------- | |
# Aggregation – average positive probability → binary overall label | |
# --------------------------------------------------------------------------- | |
def aggregate_sentiments( | |
results: List[Tuple[str, float]], | |
avg_threshold: float = _DEFAULT_THRESHOLD, | |
) -> str: | |
"""Compute overall **Positive/Negative** based on *mean* positive probability. | |
* *results* – list returned by ``analyze_sentiment`` for each headline. | |
* If the average positive probability ≥ *avg_threshold* → *Positive*. | |
* Empty list → *Unknown*. | |
""" | |
if not results: | |
return "Unknown" | |
avg_pos = sum(prob for _, prob in results) / len(results) | |
return "Positive" if avg_pos >= avg_threshold else "Negative" | |
# --------------------------------------------------------------------------- | |
# ORG‑entity extraction (for ticker discovery) | |
# --------------------------------------------------------------------------- | |
def extract_org_entities(text: str, pipe=None, max_entities: int = 5) -> List[str]: | |
"""Return up to *max_entities* unique ORG tokens (upper‑case, de‑hashed).""" | |
try: | |
ner_pipe = pipe or ner_pipeline | |
entities = ner_pipe(text) | |
orgs: List[str] = [] | |
for ent in entities: | |
if ent.get("entity_group") == "ORG": | |
token = ent["word"].replace("##", "").strip().upper() | |
if token and token not in orgs: | |
orgs.append(token) | |
if len(orgs) >= max_entities: | |
break | |
return orgs | |
except Exception: | |
return [] | |
# --------------------------------------------------------------------------- | |
# Public accessors (backward compatibility with app.py) | |
# --------------------------------------------------------------------------- | |
def get_sentiment_pipeline(): | |
return sentiment_pipeline | |
def get_ner_pipeline(): | |
return ner_pipeline | |