|
import streamlit as st |
|
from func import fetch_news, analyze_sentiment, extract_org_entities |
|
|
|
import time |
|
|
|
|
|
st.set_page_config(page_title="Stock News Sentiment Analysis", layout="centered") |
|
|
|
st.markdown(""" |
|
<style> |
|
.main { background-color: #f9fbfc; } |
|
.stTextInput>div>div>input, .stTextArea textarea { |
|
font-size: 16px; |
|
padding: 0.5rem; |
|
} |
|
.stButton>button { |
|
background-color: #4CAF50; |
|
color: white; |
|
font-size: 16px; |
|
padding: 0.5rem 1rem; |
|
border-radius: 8px; |
|
} |
|
.stButton>button:hover { |
|
background-color: #45a049; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.title("\U0001F4CA Stock News Sentiment Analysis") |
|
st.markdown(""" |
|
This tool analyzes the sentiment of news articles related to companies you mention in text. |
|
\U0001F4A1 *Try input like:* `I want to check Apple, Tesla, and Microsoft.` |
|
**Note:** If news fetching fails, it may be due to changes in the Finviz website or access restrictions. |
|
""") |
|
|
|
free_text = st.text_area("Enter text mentioning companies:", height=100) |
|
tickers = extract_org_entities(free_text) |
|
|
|
if tickers: |
|
cleaned_input = ", ".join(tickers) |
|
st.markdown(f"\U0001F50E **Identified Tickers:** `{cleaned_input}`") |
|
else: |
|
tickers = [] |
|
|
|
|
|
if st.button("Get News and Sentiment"): |
|
if not tickers: |
|
st.warning("Please mention at least one recognizable company.") |
|
else: |
|
progress_bar = st.progress(0) |
|
total_stocks = len(tickers) |
|
for idx, ticker in enumerate(tickers): |
|
st.subheader(f"Analyzing {ticker}...") |
|
news_list = fetch_news(ticker) |
|
|
|
if news_list: |
|
sentiments = [] |
|
for news in news_list: |
|
sentiment = analyze_sentiment(news['title']) |
|
sentiments.append(sentiment) |
|
|
|
positive_count = sentiments.count("Positive") |
|
negative_count = sentiments.count("Negative") |
|
total = len(sentiments) |
|
positive_ratio = positive_count / total if total else 0 |
|
negative_ratio = negative_count / total if total else 0 |
|
|
|
if positive_ratio >= 0.4: |
|
overall_sentiment = "Positive" |
|
elif negative_ratio >= 0.6: |
|
overall_sentiment = "Negative" |
|
else: |
|
overall_sentiment = "Neutral" |
|
|
|
st.write(f"**Top 3 News Articles for {ticker}**") |
|
for i, news in enumerate(news_list[:3], 1): |
|
sentiment = sentiments[i-1] |
|
st.markdown(f"{i}. [{news['title']}]({news['link']}) - **{sentiment}**") |
|
|
|
st.write(f"**Overall Sentiment for {ticker}: {overall_sentiment}**") |
|
else: |
|
st.write(f"No news available for {ticker}.") |
|
|
|
progress_bar.progress((idx + 1) / total_stocks) |
|
time.sleep(0.1) |
|
|