|
import streamlit as st |
|
from func import ( |
|
get_sentiment_pipeline, |
|
get_ner_pipeline, |
|
fetch_news, |
|
analyze_sentiment, |
|
extract_org_entities, |
|
) |
|
import time |
|
|
|
|
|
st.set_page_config( |
|
page_title="EquiPulse: Real-Time Stock News Sentiment", |
|
layout="centered", |
|
initial_sidebar_state="collapsed" |
|
) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
body { |
|
background-color: #ffffff; |
|
} |
|
h1 { |
|
color: #002b45; |
|
font-family: 'Segoe UI', sans-serif; |
|
font-size: 32px; |
|
} |
|
.stTextInput > div > div > input, |
|
.stTextArea textarea { |
|
font-size: 16px; |
|
} |
|
.stButton>button { |
|
background-color: #002b45; |
|
color: white; |
|
font-size: 16px; |
|
padding: 0.4rem 1rem; |
|
border-radius: 6px; |
|
} |
|
.stButton>button:hover { |
|
background-color: #004b78; |
|
} |
|
.stMarkdown { |
|
font-size: 16px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
col1, col2 = st.columns([1, 9]) |
|
with col1: |
|
st.image("https://cdn-icons-png.flaticon.com/512/2721/2721203.png", width=48) |
|
with col2: |
|
st.markdown("<h1 style='margin-bottom: 0.2rem;'>EquiPulse: Real-Time Stock News Sentiment</h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
<div style='font-size:16px; line-height:1.6;'> |
|
Uncover real-time sentiment from financial headlines mentioning your target companies.<br> |
|
<b>π¬ Try:</b> <i>Apple, Tesla, and Microsoft</i> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("#### π― Enter Your Target Company Tickers") |
|
free_text = st.text_area("Example: Apple, Nvidia, Google", height=90) |
|
|
|
ner_pipeline = get_ner_pipeline() |
|
tickers = extract_org_entities(free_text, ner_pipeline) |
|
|
|
if tickers: |
|
st.markdown(f"β
**Identified Tickers:** `{', '.join(tickers)}`") |
|
else: |
|
tickers = [] |
|
|
|
|
|
if st.button("Get News and Sentiment"): |
|
if not tickers: |
|
st.warning("β οΈ Please enter at least one recognizable company name.") |
|
else: |
|
sentiment_pipeline = get_sentiment_pipeline() |
|
progress_bar = st.progress(0) |
|
total_stocks = len(tickers) |
|
|
|
for idx, ticker in enumerate(tickers): |
|
st.markdown(f"---\n#### π Analyzing: `{ticker}`") |
|
|
|
news_list = fetch_news(ticker) |
|
|
|
if news_list: |
|
sentiments = [analyze_sentiment(news['title'], sentiment_pipeline) for news in news_list] |
|
|
|
pos_count = sentiments.count("Positive") |
|
neg_count = sentiments.count("Negative") |
|
total = len(sentiments) |
|
pos_ratio = pos_count / total if total else 0 |
|
neg_ratio = neg_count / total if total else 0 |
|
|
|
if pos_ratio >= 0.25: |
|
overall = "Positive" |
|
elif neg_ratio >= 0.75: |
|
overall = "Negative" |
|
else: |
|
overall = "Neutral" |
|
|
|
st.markdown(f"**π° Top News for `{ticker}`:**") |
|
for i, news in enumerate(news_list[:3]): |
|
st.markdown(f"{i+1}. [{news['title']}]({news['link']}) β **{sentiments[i]}**") |
|
|
|
st.success(f"π **Overall Sentiment for `{ticker}`: {overall}**") |
|
else: |
|
st.info(f"No recent news available for `{ticker}`.") |
|
|
|
progress_bar.progress((idx + 1) / total_stocks) |
|
time.sleep(0.1) |
|
|