File size: 4,391 Bytes
0228682 735a2fd df941ba dd32eee df941ba eeeb3ea df941ba eeeb3ea df941ba b1984fa dd32eee df941ba dd32eee df941ba b1984fa df941ba eeeb3ea df941ba eeeb3ea df941ba 4f4cea0 96fabff 4f4cea0 96fabff 4f4cea0 0bd503e 9966141 0bd503e 9966141 df941ba 0bd503e 735a2fd 36ccfe7 df941ba 9966141 735a2fd 0228682 9966141 0228682 735a2fd 9966141 0228682 9966141 0228682 735a2fd 0228682 ade49f8 0228682 9966141 df941ba 0228682 df941ba 0228682 df941ba 0228682 b1984fa eeeb3ea df941ba eeeb3ea df941ba 0228682 df941ba 0228682 b1984fa df941ba 0228682 df941ba 0228682 9966141 0228682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
from func import (
get_sentiment_pipeline,
get_ner_pipeline,
fetch_news,
analyze_sentiment,
extract_org_entities,
)
import time
# ----------- Page Config -----------
st.set_page_config(
page_title="EquiPulse: Stock Sentiment Tracker",
layout="centered",
initial_sidebar_state="collapsed"
)
# ----------- Custom Styling -----------
st.markdown("""
<style>
body {
background-color: #ffffff;
}
/* Title styling */
.main-title {
font-size: 32px;
font-weight: 700;
font-family: 'Segoe UI', sans-serif;
color: #002b45;
margin-bottom: 1.2rem;
white-space: nowrap;
overflow-x: auto;
}
.main-title::-webkit-scrollbar {
height: 4px;
}
.main-title::-webkit-scrollbar-thumb {
background-color: #ccc;
border-radius: 2px;
}
/* Input + Button styling */
.stTextInput > div > div > input,
.stTextArea textarea {
font-size: 16px;
}
.stButton>button {
background-color: #002b45;
color: white;
font-size: 16px;
padding: 0.4rem 1rem;
border-radius: 6px;
}
.stButton>button:hover {
background-color: #004b78;
}
.stMarkdown {
font-size: 16px;
}
</style>
""", unsafe_allow_html=True)
# ----------- Header Title (Centered + Bold + Large + Professional) -----------
st.markdown("""
<style>
.centered-title {
text-align: center;
font-size: 36px;
font-weight: 800;
font-family: 'Segoe UI', sans-serif;
color: #002b45;
margin-top: 20px;
margin-bottom: 20px;
}
</style>
<div class="centered-title">π EquiPulse: Stock Sentiment Tracker</div>
""", unsafe_allow_html=True)
# ----------- Description Section -----------
st.markdown("""
<div style='font-size:16px; line-height:1.6; color: #333333; margin-bottom: 1rem;'>
Analyze real-time financial sentiment from news headlines related to companies you're interested in.
</div>
""", unsafe_allow_html=True)
# ----------- Input Area -----------
st.markdown("#### π― Enter Your Target Company Tickers")
free_text = st.text_area("Example: AAPL, NVDA, TSLA", height=90)
# ----------- Ticker Extraction -----------
ner_pipeline = get_ner_pipeline()
tickers = extract_org_entities(free_text, ner_pipeline)
if tickers:
st.markdown(f"β
**Recognized Tickers:** `{', '.join(tickers)}`")
else:
tickers = []
# ----------- Action Button -----------
if st.button("π Get News and Sentiment"):
if not tickers:
st.warning("β οΈ Please enter at least one recognizable company name or ticker.")
else:
sentiment_pipeline = get_sentiment_pipeline()
progress_bar = st.progress(0)
total_stocks = len(tickers)
for idx, ticker in enumerate(tickers):
st.markdown(f"---\n#### π Analyzing `{ticker}`")
news_list = fetch_news(ticker)
if news_list:
sentiments = [analyze_sentiment(news['title'], sentiment_pipeline) for news in news_list]
pos_count = sentiments.count("Positive")
neg_count = sentiments.count("Negative")
total = len(sentiments)
pos_ratio = pos_count / total if total else 0
neg_ratio = neg_count / total if total else 0
# Simple heuristic for overall sentiment
if pos_ratio >= 0.25:
overall = "Positive"
elif neg_ratio >= 0.75:
overall = "Negative"
else:
overall = "Neutral"
# Display news
st.markdown(f"**π° Top News for `{ticker}`:**")
for i, news in enumerate(news_list[:3]):
st.markdown(f"{i+1}. [{news['title']}]({news['link']}) β **{sentiments[i]}**")
st.success(f"π **Overall Sentiment for `{ticker}`: {overall}**")
else:
st.info(f"No recent news found for `{ticker}`.")
progress_bar.progress((idx + 1) / total_stocks)
time.sleep(0.1)
|