Light-Dav's picture
Update app.py
c13ab36 verified
raw
history blame
8.89 kB
import gradio as gr
from transformers import pipeline
import os
# --- Model Loading ---
# Using the model ID you've been working with, which is fine-tuned on an English dataset (IMDB).
# It's crucial that this model is indeed fine-tuned for sentiment analysis in English.
MODEL_ID = "Light-Dav/sentiment-analysis-full-project"
try:
# Attempt to load the pipeline. This needs to be outside the function for efficiency.
# Using top_k=None to get all scores (equivalent to return_all_scores=True in older versions).
# This also addresses the UserWarning about `return_all_scores` deprecation.
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_ID, top_k=None)
model_loaded_successfully = True
except Exception as e:
print(f"Error loading model: {e}")
sentiment_analyzer = None
model_loaded_successfully = False
# --- Custom CSS for a unique look ---
custom_css = """
body {
background-color: #f0f2f5; /* Light grey background */
}
.gradio-container {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
border-radius: 15px;
overflow: hidden;
background-color: #ffffff; /* White card background */
}
h1, h2, h3 {
color: #4CAF50; /* Green accents */
text-align: center;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
animation: fadeIn 1s ease-in-out;
}
.gr-button.primary {
background-color: #4CAF50 !important;
color: white !important;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button.primary:hover {
background-color: #45a049 !important;
}
.gradio-output {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 15px;
margin-top: 20px;
background-color: #f9f9f9;
}
.sentiment-display {
text-align: center;
padding: 10px;
border-radius: 8px;
margin-top: 15px;
font-size: 1.2em;
font-weight: bold;
}
.sentiment-positive {
background-color: #e6ffe6; /* Light green */
color: #28a745; /* Darker green */
}
.sentiment-negative {
background-color: #ffe6e6; /* Light red */
color: #dc3545; /* Darker red */
}
.sentiment-neutral {
background-color: #e6f7ff; /* Light blue */
color: #007bff; /* Darker blue */
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
"""
# --- Helper Function for Sentiment Interpretation ---
def interpret_sentiment(label, score):
emoji = ""
description = ""
color_class = ""
# IMPORTANT: Adjust 'LABEL_0', 'LABEL_1', 'LABEL_2' to your model's actual output labels
# Check your model's config.json on Hugging Face Hub under 'id2label' or 'label2id'
# Example: "id2label": {"0": "negative", "1": "neutral", "2": "positive"}
if label.lower() == "positive" or label.lower() == "label_2": # Assuming LABEL_2 is positive
emoji = "😊"
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
color_class = "sentiment-positive"
elif label.lower() == "negative" or label.lower() == "label_0": # Assuming LABEL_0 is negative
emoji = "😠"
description = "This text expresses a **highly negative** sentiment." if score > 0.9 else "This text expresses a **negative** sentiment."
color_class = "sentiment-negative"
elif label.lower() == "neutral" or label.lower() == "label_1": # Assuming LABEL_1 is neutral
emoji = "😐"
description = "This text expresses a **neutral** sentiment."
color_class = "sentiment-neutral"
else:
emoji = "❓"
description = "Could not confidently determine sentiment. Unexpected label."
color_class = ""
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
f"<p>{description}</p>"
# --- Sentiment Analysis Function ---
def analyze_sentiment(text):
if not model_loaded_successfully:
return {
"Overall Sentiment": "<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>",
"Confidence Scores": {},
"Raw Output": "Model loading failed."
}
if not text.strip():
return {
"Overall Sentiment": "<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p>Start typing to analyze its sentiment.</p>",
"Confidence Scores": {},
"Raw Output": ""
}
try:
# The pipeline returns a list of lists of dictionaries if top_k=None
# e.g., [[{'label': 'LABEL_0', 'score': 0.9}, {'label': 'LABEL_1', 'score': 0.05}, ...]]
results = sentiment_analyzer(text)[0] # Get the first (and only) list of results
# Sort results by score in descending order
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
# Get the top sentiment
top_sentiment = results_sorted[0]
label = top_sentiment['label']
score = top_sentiment['score']
# Format for Gradio Label component (Dictionary {label: score})
# This is for the 'Confidence Scores' output
confidence_scores_output = {item['label']: item['score'] for item in results}
# Interpret sentiment for the 'Overall Sentiment' output
overall_sentiment_display = interpret_sentiment(label, score)
return {
"Overall Sentiment": overall_sentiment_display,
"Confidence Scores": confidence_scores_output,
"Raw Output": str(results)
}
except Exception as e:
return {
"Overall Sentiment": f"<div class='sentiment-display'>❌ Error ❌</div><p>An error occurred during analysis: {e}</p>",
"Confidence Scores": {},
"Raw Output": f"Error: {e}"
}
# --- Gradio Interface ---
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: # Using gr.Blocks for more layout control
gr.Markdown("# ✨ Sentiment Spark ✨")
gr.Markdown("---")
gr.Markdown("### Uncover the emotional tone of your English text instantly!")
with gr.Row(): # Horizontal layout for input and outputs
with gr.Column(scale=2):
text_input = gr.Textbox(
lines=7,
placeholder="Type your English text here...",
label="Your Text",
interactive=True,
value="This movie was absolutely brilliant! A masterpiece of storytelling and emotion."
)
analyze_btn = gr.Button("Analyze Sentiment", variant="primary") # The main action button
gr.Markdown("---")
gr.Markdown("### Try some examples:")
gr.Examples(
examples=[
["This product exceeded my expectations, truly amazing!"],
["I found the customer service to be quite disappointing and slow."],
["The weather forecast predicts light rain for tomorrow morning."],
["What a fantastic experience! Highly recommend it."],
["I'm so frustrated with this slow internet connection."],
["The meeting concluded without any major decisions."]
],
inputs=text_input,
fn=analyze_sentiment, # <-- CORRECTED: Function to run for examples
outputs=[overall_sentiment_output, confidence_scores_output, raw_output], # <-- CORRECTED: Outputs for examples
cache_examples=True # Caching examples for faster loading
)
with gr.Column(scale=3):
gr.Markdown("## πŸ“ˆ Analysis Results πŸ“‰")
# Using gr.HTML for "Overall Sentiment" to allow custom CSS and rich content
overall_sentiment_output = gr.HTML(label="Overall Sentiment")
# Using gr.Label for "Confidence Scores" as it's designed for classification outputs
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores")
# Using gr.JSON for raw output, useful for debugging, but hidden by default
raw_output = gr.JSON(label="Raw Model Output", visible=False)
# --- Event Listeners ---
# Trigger analysis when text input changes (optional, can be resource intensive if live=True)
text_input.change(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output],
# live=True # Uncomment for live updates as user types (can be resource intensive)
)
# Trigger analysis when the button is clicked
analyze_btn.click(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output]
)
# Launch the Gradio application
demo.launch()