Light-Dav's picture
Update app.py
8a03f45 verified
raw
history blame
7.29 kB
import gradio as gr
from transformers import pipeline
import os
# --- Model Loading ---
MODEL_ID = "Light-Dav/sentiment-analysis-full-project"
try:
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_ID, top_k=None)
model_loaded_successfully = True
except Exception as e:
print(f"Error loading model: {e}")
sentiment_analyzer = None
model_loaded_successfully = False
# --- Custom CSS for a dark look inspired by the website ---
custom_css = """
body {
background-color: #121212; /* Dark background */
color: #f8f8f2; /* Light text */
}
.gradio-container {
box-shadow: 0 4px 8px rgba(255, 255, 255, 0.1);
border-radius: 10px;
overflow: hidden;
background-color: #1e1e1e; /* Darker card background */
padding: 20px;
margin-bottom: 20px;
}
h1, h2, h3 {
color: #80cbc4; /* Teal/Cyan accents */
text-align: center;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
animation: fadeIn 1s ease-in-out;
}
.gr-button.primary {
background-color: #80cbc4 !important;
color: #1e1e1e !important;
border-radius: 6px;
transition: background-color 0.3s ease;
padding: 10px 20px;
}
.gr-button.primary:hover {
background-color: #26a69a !important;
}
.gradio-output {
border: 1px solid #424242;
border-radius: 8px;
padding: 15px;
margin-top: 15px;
background-color: #212121;
color: #f8f8f2;
}
.sentiment-display {
text-align: center;
padding: 10px;
border-radius: 6px;
margin-top: 10px;
font-size: 1.1em;
font-weight: bold;
}
.sentiment-positive {
background-color: #388e3c; /* Darker green */
color: #e8f5e9; /* Light green */
}
.sentiment-negative {
background-color: #d32f2f; /* Darker red */
color: #ffebee; /* Light red */
}
.sentiment-neutral {
background-color: #1976d2; /* Darker blue */
color: #e3f2fd; /* Light blue */
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
gr-textbox > label {
color: #80cbc4;
}
"""
# --- Helper Function for Sentiment Interpretation ---
def interpret_sentiment(label, score):
emoji = ""
description = ""
color_class = ""
if label.lower() == "positive" or label.lower() == "label_2":
emoji = "😊"
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
color_class = "sentiment-positive"
elif label.lower() == "negative" or label.lower() == "label_0":
emoji = "😠"
description = "This text expresses a **highly negative** sentiment." if score > 0.9 else "This text expresses a **negative** sentiment."
color_class = "sentiment-negative"
elif label.lower() == "neutral" or label.lower() == "label_1":
emoji = "😐"
description = "This text expresses a **neutral** sentiment."
color_class = "sentiment-neutral"
else:
emoji = "❓"
description = "Could not confidently determine sentiment. Unexpected label."
color_class = ""
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
f"<p>{description}</p>"
# --- Sentiment Analysis Function ---
def analyze_sentiment(text):
if not model_loaded_successfully:
return {
"Overall Sentiment": "<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>",
"Confidence Scores": {},
"Raw Output": "Model loading failed."
}
if not text.strip():
return {
"Overall Sentiment": "<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p>Start typing to analyze its sentiment.</p>",
"Confidence Scores": {},
"Raw Output": ""
}
try:
results = sentiment_analyzer(text)[0]
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
top_sentiment = results_sorted(0)
label = top_sentiment['label']
score = top_sentiment['score']
confidence_scores_output = {item['label']: item['score'] for item in results}
overall_sentiment_display = interpret_sentiment(label, score)
return {
"Overall Sentiment": overall_sentiment_display,
"Confidence Scores": confidence_scores_output,
"Raw Output": str(results)
}
except Exception as e:
return {
"Overall Sentiment": f"<div class='sentiment-display'>❌ Error ❌</div><p>An error occurred during analysis: {e}</p>",
"Confidence Scores": {},
"Raw Output": f"Error: {e}"
}
# --- Gradio Interface ---
with gr.Blocks(css=custom_css, theme=gr.themes.BaseDark()) as demo:
gr.Markdown("<h1 style='color: #80cbc4; text-align: center;'>🌌 Sentiment Analyzer 🌌</h1>")
gr.Markdown("<p style='color: #f8f8f2; text-align: center;'>Uncover the emotional tone of your English text instantly.</p>")
with gr.Column(elem_classes="gradio-container"):
text_input = gr.Textbox(
lines=7,
placeholder="Type your English text here...",
label="Your Text",
interactive=True,
value="This movie was absolutely brilliant! A masterpiece of storytelling and emotion."
)
analyze_btn = gr.Button("Analyze Sentiment", variant="primary")
gr.Markdown("<hr style='border-top: 1px solid #424242;'>")
gr.Markdown("<h3 style='color: #80cbc4; text-align: center;'>Try some examples:</h3>")
examples = gr.Examples(
examples=[
["This product exceeded my expectations, truly amazing!"],
["I found the customer service to be quite disappointing and slow."],
["The weather forecast predicts light rain for tomorrow morning."],
["What a fantastic experience! Highly recommend it."],
["I'm so frustrated with this slow internet connection."],
["The meeting concluded without any major decisions."]
],
inputs=text_input,
fn=analyze_sentiment,
outputs=[gr.HTML(label="Overall Sentiment"), gr.Label(num_top_classes=3, label="Confidence Scores"), gr.JSON(label="Raw Model Output", visible=False)],
cache_examples=True
)
gr.Markdown("<hr style='border-top: 1px solid #424242;'>")
gr.Markdown("<h2 style='color: #80cbc4;'>πŸ“Š Analysis Results</h2>")
overall_sentiment_output = gr.HTML(label="Overall Sentiment")
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores")
raw_output = gr.JSON(label="Raw Model Output", visible=False)
analyze_btn.click(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output]
)
text_input.change(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output],
# live=True # Puedes descomentar si quieres actualizaciones en vivo (consume mΓ‘s recursos)
)
demo.launch()