Upload 2 files
Browse files- app.py +69 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision import nn
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from __future__ import print_function
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.optim as optim
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torchvision.transforms as transforms
|
12 |
+
import copy
|
13 |
+
import torchvision.models as models
|
14 |
+
import torchvision.transforms.functional as TF
|
15 |
+
from PIL import Image
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
|
19 |
+
#Defining the predict function
|
20 |
+
def style_transfer(cont_img,styl_img):
|
21 |
+
|
22 |
+
#Start the timer
|
23 |
+
start_time = time.time()
|
24 |
+
|
25 |
+
#transform the input image
|
26 |
+
style_img = image_transform(styl_img)
|
27 |
+
content_img =image_transform(cont_img)
|
28 |
+
|
29 |
+
#getting input image
|
30 |
+
input_img = content_img.clone()
|
31 |
+
|
32 |
+
#running the style transfer
|
33 |
+
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
|
34 |
+
content_img, style_img, input_img)
|
35 |
+
# output_img = output.detach().cpu().squeeze(0)
|
36 |
+
# output_img = TF.to_pil_image(output_img)
|
37 |
+
end_time=time.time()
|
38 |
+
|
39 |
+
pred_time =round(end_time- start_time, 5)
|
40 |
+
|
41 |
+
return output
|
42 |
+
|
43 |
+
##Gradio App
|
44 |
+
import gradio as gr
|
45 |
+
title= 'Style Transfer'
|
46 |
+
description='A model to transfer the style of one image to another'
|
47 |
+
article = 'Created at Pytorch Model Deployment'
|
48 |
+
|
49 |
+
#example_images
|
50 |
+
example_images = [["/content/content.jpg" ,"/content/style.jpg"]]
|
51 |
+
|
52 |
+
#Create the gradio demo
|
53 |
+
demo = gr.Interface(
|
54 |
+
fn=style_transfer,
|
55 |
+
inputs=[
|
56 |
+
gr.inputs.Image(label="content Image"),
|
57 |
+
gr.inputs.Image(label="style_image")
|
58 |
+
],
|
59 |
+
examples=example_images,
|
60 |
+
outputs="image",
|
61 |
+
allow_flagging=False,
|
62 |
+
title=title,
|
63 |
+
description=description,
|
64 |
+
article=article
|
65 |
+
)
|
66 |
+
|
67 |
+
# Launch the Gradio interface
|
68 |
+
demo.launch(debug=True)
|
69 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.0
|
2 |
+
torchvision==0.15.1
|
3 |
+
gradio == 3.29.0
|