Legola commited on
Commit
aa1bc3b
·
1 Parent(s): 5d77b8d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -80
app.py DELETED
@@ -1,80 +0,0 @@
1
- from __future__ import print_function
2
- import torch
3
- import torchvision
4
- import torch.nn as nn
5
- import gradio as gr
6
- import os
7
- import time
8
- import torch.nn.functional as F
9
- import torch.optim as optim
10
- import matplotlib.pyplot as plt
11
- import torchvision.transforms as transforms
12
- import copy
13
- import torchvision.models as models
14
- import torchvision.transforms.functional as TF
15
- from PIL import Image
16
- import numpy as np
17
-
18
- def image_transform(image):
19
- if isinstance(image, str):
20
- # If image is a path to a file, open it using PIL
21
- image = Image.open(image).convert('RGB')
22
- else:
23
- # If image is a NumPy array, convert it to a PIL image
24
- image = Image.fromarray(image.astype('uint8'), 'RGB')
25
- # Apply the same transformations as before
26
- image = transform(image).unsqueeze(0)
27
- return image.to(device)
28
-
29
-
30
- #Defining the predict function
31
- def style_transfer(cont_img,styl_img):
32
-
33
- #Start the timer
34
- start_time = time.time()
35
-
36
- #transform the input image
37
- style_img = image_transform(styl_img)
38
- content_img =image_transform(cont_img)
39
-
40
- #getting input image
41
- input_img = content_img.clone()
42
-
43
- #running the style transfer
44
- output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
45
- content_img, style_img, input_img)
46
- # output_img = output.detach().cpu().squeeze(0)
47
- # output_img = TF.to_pil_image(output_img)
48
- end_time=time.time()
49
-
50
- pred_time =round(end_time- start_time, 5)
51
-
52
- return output
53
-
54
- ##Gradio App
55
- import gradio as gr
56
- title= 'Style Transfer'
57
- description='A model to transfer the style of one image to another'
58
- article = 'Created at Pytorch Model Deployment'
59
-
60
- #example_images
61
- example_list = [["examples/" + example] for example in os.listdir("examples")]
62
-
63
- #Create the gradio demo
64
- demo = gr.Interface(
65
- fn=style_transfer,
66
- inputs=[
67
- gr.inputs.Image(label="content image",type=pil),
68
- gr.inputs.Image(label="style_image",type=pil)
69
- ],
70
- examples=example_list,
71
- outputs="image",
72
- allow_flagging=False,
73
- title=title,
74
- description=description,
75
- article=article
76
- )
77
-
78
- # Launch the Gradio interface
79
- demo.launch(debug=True)
80
-