File size: 5,675 Bytes
666de43
19e21cf
 
2fd4d28
525fd00
68e3f69
525fd00
2fd4d28
666de43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529009f
 
666de43
b1dd78e
 
 
 
 
 
 
 
 
 
 
666de43
a6f7fc9
 
 
666de43
 
b1dd78e
 
666de43
b1dd78e
 
a6f7fc9
666de43
58cbf33
529009f
666de43
 
70d6b7c
 
 
 
a6f7fc9
666de43
5466dd4
 
 
 
666de43
5466dd4
666de43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529009f
666de43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

import torch
import torch.nn as nn
import torchvision.models as models
from PIL import Image
# from vgg_weights import VGG19_Weights


#Content Loss
class ContentLoss(nn.Module):

    def __init__(self, target,):
        super(ContentLoss, self).__init__()
        '''
        we 'detach' the target content from the tree used 
        to dynamically compute the gradient: this is a stated value,
        not a variable. Otherwise the forward method of the criterion
        will throw an error.
        '''
        self.target = target.detach()
      
    def forward(self, input):
        self.loss = F.mse_loss(input, self.target)
        return input

#Style Loss
def gram_matrix(input):
    a, b, c, d = input.size()  # a=batch size(=1)
    # b=number of feature maps
    # (c,d)=dimensions of a f. map (N=c*d)

    features = input.view(a * b, c * d)  # resize F_XL into \hat F_XL

    G = torch.mm(features, features.t())  # compute the gram product

    # we 'normalize' the values of the gram matrix
    # by dividing by the number of element in each feature maps.
    return G.div(a * b * c * d)

class StyleLoss(nn.Module):

    def __init__(self, target_feature):
        super(StyleLoss, self).__init__()
        self.target = gram_matrix(target_feature).detach()

    def forward(self, input):
        G = gram_matrix(input)
        self.loss = F.mse_loss(G, self.target)
        return input  


#Normalization

cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406])
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225])
#image transformation
# def image_transform(image):
#     if isinstance(image, str):
#         # If image is a path to a file, open it using PIL
#         image = Image.open(image).convert('RGB')
#     else:
#         # If image is a NumPy array, convert it to a PIL image
#         image = Image.fromarray(image.astype('uint8'), 'RGB')
#     # Apply the same transformations as before
#     image = transform(image).unsqueeze(0)
#     return image

def image_transform(image):
    if image is None:
        return None

    if isinstance(image, str):
        # If image is a path to a file, open it using PIL
        with open(image, "rb") as f:
            image = Image.open(f).convert('RGB')
    else:
        # If image is already a PIL image, just convert it to RGB mode
        image = image.convert('RGB')
    
    # Apply the same transformations as before
    image =image_transform(image).unsqueeze(0)
    return image


    # Create EffNetB2 pretrained weights, transforms and model
    weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
    transforms = weights.transforms()
    model = torchvision.models.efficientnet_b2(weights=weights)

#Defining a model
# weights=weights=torchvision.models.VGG19_Weights.IMAGENET1K_V1
# cnn = models.vgg19(weights=weights).features.eval()
weights = models.vgg19(pretrained='imagenet')
cnn = weights.features.eval()

    
#getting the input optimizer
def get_input_optimizer(input_img):
    # this line to show that input is a parameter that requires a gradient
    optimizer = optim.LBFGS([input_img])
    return optimizer

# desired depth layers to compute style/content losses :


content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']

def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
                               style_img, content_img,
                               content_layers=content_layers_default,
                               style_layers=style_layers_default):
    # normalization module
    normalization = Normalization(normalization_mean, normalization_std)

    # just in order to have an iterable access to or list of content/style
    # losses
    content_losses = []
    style_losses = []

    # assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential``
    # to put in modules that are supposed to be activated sequentially
    model = nn.Sequential(normalization)

    i = 0  # increment every time we see a conv
    for layer in cnn.children():
        if isinstance(layer, nn.Conv2d):
            i += 1
            name = 'conv_{}'.format(i)
        elif isinstance(layer, nn.ReLU):
            name = 'relu_{}'.format(i)
            # The in-place version doesn't play very nicely with the ``ContentLoss``
            # and ``StyleLoss`` we insert below. So we replace with out-of-place
            # ones here.
            layer = nn.ReLU(inplace=False)
        elif isinstance(layer, nn.MaxPool2d):
            name = 'pool_{}'.format(i)
        elif isinstance(layer, nn.BatchNorm2d):
            name = 'bn_{}'.format(i)
        else:
            raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))

        model.add_module(name, layer)

        if name in content_layers:
            # add content loss:
            target = model(content_img).detach()
            content_loss = ContentLoss(target)
            model.add_module("content_loss_{}".format(i), content_loss)
            content_losses.append(content_loss)

        if name in style_layers:
            # add style loss:
            target_feature = model(style_img).detach()
            style_loss = StyleLoss(target_feature)
            model.add_module("style_loss_{}".format(i), style_loss)
            style_losses.append(style_loss)

    # now we trim off the layers after the last content and style losses
    for i in range(len(model) - 1, -1, -1):
        if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
            break

    model = model[:(i + 1)]

    return model, style_losses, content_losses