import requests import gradio as gr API_URL = "https://api-inference.huggingface.co/models/ProsusAI/finbert" headers = {"Authorization": "Bearer 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"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json()[0] output = query({ "inputs": "I like you. I love you", }) # def predict_sentiment(payload): # # Sentiment Analysis # sentiment_inputs = sentiment_tokenizer(headline, padding=True, truncation=True, return_tensors='pt') # with torch.no_grad(): # sentiment_outputs = sentiment_model(**sentiment_inputs) # sentiment_prediction = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1) # pos, neg, neutr = sentiment_prediction[:, 0].item(), sentiment_prediction[:, 1].item(), sentiment_prediction[:, 2].item() # sentiment_label = "Positive" if pos > neg and pos > neutr else "Negative" if neg > pos and neg > neutr else "Neutral" # return sentiment_label # Gradio Interface iface = gr.Interface( fn=query, inputs=[gr.Textbox(lines=2, label="Financial Statement")], outputs=[ gr.Textbox(label="Sentiment"), ], live=True, title="Financial Content Sentiment Analysis", description="Enter a financial statement to analyze its sentiment." ) iface.launch()