|
import os
|
|
import shutil
|
|
from typing import List, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
import insightface
|
|
from insightface.app.common import Face
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import folder_paths
|
|
import comfy.model_management as model_management
|
|
from modules.shared import state
|
|
|
|
from scripts.reactor_logger import logger
|
|
from reactor_utils import (
|
|
move_path,
|
|
get_image_md5hash,
|
|
)
|
|
from scripts.r_faceboost import swapper, restorer
|
|
|
|
import warnings
|
|
|
|
np.warnings = warnings
|
|
np.warnings.filterwarnings('ignore')
|
|
|
|
|
|
try:
|
|
if torch.cuda.is_available():
|
|
providers = ["CUDAExecutionProvider"]
|
|
elif torch.backends.mps.is_available():
|
|
providers = ["CoreMLExecutionProvider"]
|
|
elif hasattr(torch,'dml') or hasattr(torch,'privateuseone'):
|
|
providers = ["ROCMExecutionProvider"]
|
|
else:
|
|
providers = ["CPUExecutionProvider"]
|
|
except Exception as e:
|
|
logger.debug(f"ExecutionProviderError: {e}.\nEP is set to CPU.")
|
|
providers = ["CPUExecutionProvider"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models_path_old = os.path.join(os.path.dirname(os.path.dirname(__file__)), "models")
|
|
insightface_path_old = os.path.join(models_path_old, "insightface")
|
|
insightface_models_path_old = os.path.join(insightface_path_old, "models")
|
|
|
|
models_path = folder_paths.models_dir
|
|
insightface_path = os.path.join(models_path, "insightface")
|
|
insightface_models_path = os.path.join(insightface_path, "models")
|
|
reswapper_path = os.path.join(models_path, "reswapper")
|
|
|
|
if os.path.exists(models_path_old):
|
|
move_path(insightface_models_path_old, insightface_models_path)
|
|
move_path(insightface_path_old, insightface_path)
|
|
move_path(models_path_old, models_path)
|
|
if os.path.exists(insightface_path) and os.path.exists(insightface_path_old):
|
|
shutil.rmtree(insightface_path_old)
|
|
shutil.rmtree(models_path_old)
|
|
|
|
|
|
FS_MODEL = None
|
|
CURRENT_FS_MODEL_PATH = None
|
|
|
|
ANALYSIS_MODELS = {
|
|
"640": None,
|
|
"320": None,
|
|
}
|
|
|
|
SOURCE_FACES = None
|
|
SOURCE_IMAGE_HASH = None
|
|
TARGET_FACES = None
|
|
TARGET_IMAGE_HASH = None
|
|
TARGET_FACES_LIST = []
|
|
TARGET_IMAGE_LIST_HASH = []
|
|
|
|
def unload_model(model):
|
|
if model is not None:
|
|
|
|
|
|
|
|
|
|
|
|
del model
|
|
return None
|
|
|
|
def unload_all_models():
|
|
global FS_MODEL, CURRENT_FS_MODEL_PATH
|
|
FS_MODEL = unload_model(FS_MODEL)
|
|
ANALYSIS_MODELS["320"] = unload_model(ANALYSIS_MODELS["320"])
|
|
ANALYSIS_MODELS["640"] = unload_model(ANALYSIS_MODELS["640"])
|
|
|
|
def get_current_faces_model():
|
|
global SOURCE_FACES
|
|
return SOURCE_FACES
|
|
|
|
def getAnalysisModel(det_size = (640, 640)):
|
|
global ANALYSIS_MODELS
|
|
ANALYSIS_MODEL = ANALYSIS_MODELS[str(det_size[0])]
|
|
if ANALYSIS_MODEL is None:
|
|
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
|
|
name="buffalo_l", providers=providers, root=insightface_path
|
|
)
|
|
ANALYSIS_MODEL.prepare(ctx_id=0, det_size=det_size)
|
|
ANALYSIS_MODELS[str(det_size[0])] = ANALYSIS_MODEL
|
|
return ANALYSIS_MODEL
|
|
|
|
def getFaceSwapModel(model_path: str):
|
|
global FS_MODEL, CURRENT_FS_MODEL_PATH
|
|
if FS_MODEL is None or CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
|
|
CURRENT_FS_MODEL_PATH = model_path
|
|
FS_MODEL = unload_model(FS_MODEL)
|
|
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
|
|
|
|
return FS_MODEL
|
|
|
|
|
|
def sort_by_order(face, order: str):
|
|
if order == "left-right":
|
|
return sorted(face, key=lambda x: x.bbox[0])
|
|
if order == "right-left":
|
|
return sorted(face, key=lambda x: x.bbox[0], reverse = True)
|
|
if order == "top-bottom":
|
|
return sorted(face, key=lambda x: x.bbox[1])
|
|
if order == "bottom-top":
|
|
return sorted(face, key=lambda x: x.bbox[1], reverse = True)
|
|
if order == "small-large":
|
|
return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
|
|
|
|
|
|
|
|
return sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)
|
|
|
|
def get_face_gender(
|
|
face,
|
|
face_index,
|
|
gender_condition,
|
|
operated: str,
|
|
order: str,
|
|
):
|
|
gender = [
|
|
x.sex
|
|
for x in face
|
|
]
|
|
gender.reverse()
|
|
|
|
if face_index >= len(gender):
|
|
logger.status("Requested face index (%s) is out of bounds (max available index is %s)", face_index, len(gender))
|
|
return None, 0
|
|
face_gender = gender[face_index]
|
|
logger.status("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
|
|
if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
|
|
logger.status("OK - Detected Gender matches Condition")
|
|
try:
|
|
faces_sorted = sort_by_order(face, order)
|
|
return faces_sorted[face_index], 0
|
|
|
|
except IndexError:
|
|
return None, 0
|
|
else:
|
|
logger.status("WRONG - Detected Gender doesn't match Condition")
|
|
faces_sorted = sort_by_order(face, order)
|
|
return faces_sorted[face_index], 1
|
|
|
|
|
|
def half_det_size(det_size):
|
|
logger.status("Trying to halve 'det_size' parameter")
|
|
return (det_size[0] // 2, det_size[1] // 2)
|
|
|
|
def analyze_faces(img_data: np.ndarray, det_size=(640, 640)):
|
|
face_analyser = getAnalysisModel(det_size)
|
|
faces = face_analyser.get(img_data)
|
|
|
|
|
|
if len(faces) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
det_size_half = half_det_size(det_size)
|
|
return analyze_faces(img_data, det_size_half)
|
|
|
|
return faces
|
|
|
|
def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0, order="large-small"):
|
|
|
|
buffalo_path = os.path.join(insightface_models_path, "buffalo_l.zip")
|
|
if os.path.exists(buffalo_path):
|
|
os.remove(buffalo_path)
|
|
|
|
if gender_source != 0:
|
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
det_size_half = half_det_size(det_size)
|
|
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
|
|
return get_face_gender(face,face_index,gender_source,"Source", order)
|
|
|
|
if gender_target != 0:
|
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
det_size_half = half_det_size(det_size)
|
|
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
|
|
return get_face_gender(face,face_index,gender_target,"Target", order)
|
|
|
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
det_size_half = half_det_size(det_size)
|
|
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target, order)
|
|
|
|
try:
|
|
faces_sorted = sort_by_order(face, order)
|
|
return faces_sorted[face_index], 0
|
|
|
|
except IndexError:
|
|
return None, 0
|
|
|
|
|
|
def swap_face(
|
|
source_img: Union[Image.Image, None],
|
|
target_img: Image.Image,
|
|
model: Union[str, None] = None,
|
|
source_faces_index: List[int] = [0],
|
|
faces_index: List[int] = [0],
|
|
gender_source: int = 0,
|
|
gender_target: int = 0,
|
|
face_model: Union[Face, None] = None,
|
|
faces_order: List = ["large-small", "large-small"],
|
|
face_boost_enabled: bool = False,
|
|
face_restore_model = None,
|
|
face_restore_visibility: int = 1,
|
|
codeformer_weight: float = 0.5,
|
|
interpolation: str = "Bicubic",
|
|
):
|
|
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH
|
|
result_image = target_img
|
|
|
|
if model is not None:
|
|
|
|
if isinstance(source_img, str):
|
|
import base64, io
|
|
if 'base64,' in source_img:
|
|
|
|
base64_data = source_img.split('base64,')[-1]
|
|
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
|
|
img_bytes = base64.b64decode(source_img)
|
|
|
|
source_img = Image.open(io.BytesIO(img_bytes))
|
|
|
|
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
|
|
|
if source_img is not None:
|
|
|
|
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
|
|
|
source_image_md5hash = get_image_md5hash(source_img)
|
|
|
|
if SOURCE_IMAGE_HASH is None:
|
|
SOURCE_IMAGE_HASH = source_image_md5hash
|
|
source_image_same = False
|
|
else:
|
|
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
|
|
if not source_image_same:
|
|
SOURCE_IMAGE_HASH = source_image_md5hash
|
|
|
|
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
|
|
logger.info("Source Image the Same? %s", source_image_same)
|
|
|
|
if SOURCE_FACES is None or not source_image_same:
|
|
logger.status("Analyzing Source Image...")
|
|
source_faces = analyze_faces(source_img)
|
|
SOURCE_FACES = source_faces
|
|
elif source_image_same:
|
|
logger.status("Using Hashed Source Face(s) Model...")
|
|
source_faces = SOURCE_FACES
|
|
|
|
elif face_model is not None:
|
|
|
|
source_faces_index = [0]
|
|
logger.status("Using Loaded Source Face Model...")
|
|
source_face_model = [face_model]
|
|
source_faces = source_face_model
|
|
|
|
else:
|
|
logger.error("Cannot detect any Source")
|
|
|
|
if source_faces is not None:
|
|
|
|
target_image_md5hash = get_image_md5hash(target_img)
|
|
|
|
if TARGET_IMAGE_HASH is None:
|
|
TARGET_IMAGE_HASH = target_image_md5hash
|
|
target_image_same = False
|
|
else:
|
|
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
|
|
if not target_image_same:
|
|
TARGET_IMAGE_HASH = target_image_md5hash
|
|
|
|
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
|
|
logger.info("Target Image the Same? %s", target_image_same)
|
|
|
|
if TARGET_FACES is None or not target_image_same:
|
|
logger.status("Analyzing Target Image...")
|
|
target_faces = analyze_faces(target_img)
|
|
TARGET_FACES = target_faces
|
|
elif target_image_same:
|
|
logger.status("Using Hashed Target Face(s) Model...")
|
|
target_faces = TARGET_FACES
|
|
|
|
|
|
if len(target_faces) == 0:
|
|
logger.status("Cannot detect any Target, skipping swapping...")
|
|
return result_image
|
|
|
|
if source_img is not None:
|
|
|
|
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
|
|
else:
|
|
|
|
source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
|
|
src_wrong_gender = 0
|
|
|
|
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
|
logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
|
|
elif source_face is not None:
|
|
result = target_img
|
|
if "inswapper" in model:
|
|
model_path = os.path.join(insightface_path, model)
|
|
elif "reswapper" in model:
|
|
model_path = os.path.join(reswapper_path, model)
|
|
face_swapper = getFaceSwapModel(model_path)
|
|
|
|
source_face_idx = 0
|
|
|
|
for face_num in faces_index:
|
|
|
|
if face_num >= len(target_faces):
|
|
logger.status("Checked all existing target faces, skipping swapping...")
|
|
break
|
|
|
|
if len(source_faces_index) > 1 and source_face_idx > 0:
|
|
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
|
|
source_face_idx += 1
|
|
|
|
if source_face is not None and src_wrong_gender == 0:
|
|
target_face, wrong_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target, order=faces_order[0])
|
|
if target_face is not None and wrong_gender == 0:
|
|
logger.status(f"Swapping...")
|
|
if face_boost_enabled:
|
|
logger.status(f"Face Boost is enabled")
|
|
bgr_fake, M = face_swapper.get(result, target_face, source_face, paste_back=False)
|
|
bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
|
|
M *= scale
|
|
result = swapper.in_swap(target_img, bgr_fake, M)
|
|
else:
|
|
|
|
result = face_swapper.get(result, target_face, source_face)
|
|
elif wrong_gender == 1:
|
|
wrong_gender = 0
|
|
|
|
|
|
|
|
|
|
logger.status("Wrong target gender detected")
|
|
continue
|
|
else:
|
|
logger.status(f"No target face found for {face_num}")
|
|
elif src_wrong_gender == 1:
|
|
src_wrong_gender = 0
|
|
|
|
|
|
|
|
|
|
logger.status("Wrong source gender detected")
|
|
continue
|
|
else:
|
|
logger.status(f"No source face found for face number {source_face_idx}.")
|
|
|
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
|
|
|
else:
|
|
logger.status("No source face(s) in the provided Index")
|
|
else:
|
|
logger.status("No source face(s) found")
|
|
return result_image
|
|
|
|
def swap_face_many(
|
|
source_img: Union[Image.Image, None],
|
|
target_imgs: List[Image.Image],
|
|
model: Union[str, None] = None,
|
|
source_faces_index: List[int] = [0],
|
|
faces_index: List[int] = [0],
|
|
gender_source: int = 0,
|
|
gender_target: int = 0,
|
|
face_model: Union[Face, None] = None,
|
|
faces_order: List = ["large-small", "large-small"],
|
|
face_boost_enabled: bool = False,
|
|
face_restore_model = None,
|
|
face_restore_visibility: int = 1,
|
|
codeformer_weight: float = 0.5,
|
|
interpolation: str = "Bicubic",
|
|
):
|
|
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, TARGET_FACES_LIST, TARGET_IMAGE_LIST_HASH
|
|
result_images = target_imgs
|
|
|
|
if model is not None:
|
|
|
|
if isinstance(source_img, str):
|
|
import base64, io
|
|
if 'base64,' in source_img:
|
|
|
|
base64_data = source_img.split('base64,')[-1]
|
|
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
|
|
img_bytes = base64.b64decode(source_img)
|
|
|
|
source_img = Image.open(io.BytesIO(img_bytes))
|
|
|
|
target_imgs = [cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) for target_img in target_imgs]
|
|
|
|
if source_img is not None:
|
|
|
|
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
|
|
|
source_image_md5hash = get_image_md5hash(source_img)
|
|
|
|
if SOURCE_IMAGE_HASH is None:
|
|
SOURCE_IMAGE_HASH = source_image_md5hash
|
|
source_image_same = False
|
|
else:
|
|
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
|
|
if not source_image_same:
|
|
SOURCE_IMAGE_HASH = source_image_md5hash
|
|
|
|
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
|
|
logger.info("Source Image the Same? %s", source_image_same)
|
|
|
|
if SOURCE_FACES is None or not source_image_same:
|
|
logger.status("Analyzing Source Image...")
|
|
source_faces = analyze_faces(source_img)
|
|
SOURCE_FACES = source_faces
|
|
elif source_image_same:
|
|
logger.status("Using Hashed Source Face(s) Model...")
|
|
source_faces = SOURCE_FACES
|
|
|
|
elif face_model is not None:
|
|
|
|
source_faces_index = [0]
|
|
logger.status("Using Loaded Source Face Model...")
|
|
source_face_model = [face_model]
|
|
source_faces = source_face_model
|
|
|
|
else:
|
|
logger.error("Cannot detect any Source")
|
|
|
|
if source_faces is not None:
|
|
|
|
target_faces = []
|
|
for i, target_img in enumerate(target_imgs):
|
|
if state.interrupted or model_management.processing_interrupted():
|
|
logger.status("Interrupted by User")
|
|
break
|
|
|
|
target_image_md5hash = get_image_md5hash(target_img)
|
|
if len(TARGET_IMAGE_LIST_HASH) == 0:
|
|
TARGET_IMAGE_LIST_HASH = [target_image_md5hash]
|
|
target_image_same = False
|
|
elif len(TARGET_IMAGE_LIST_HASH) == i:
|
|
TARGET_IMAGE_LIST_HASH.append(target_image_md5hash)
|
|
target_image_same = False
|
|
else:
|
|
target_image_same = True if TARGET_IMAGE_LIST_HASH[i] == target_image_md5hash else False
|
|
if not target_image_same:
|
|
TARGET_IMAGE_LIST_HASH[i] = target_image_md5hash
|
|
|
|
logger.info("(Image %s) Target Image MD5 Hash = %s", i, TARGET_IMAGE_LIST_HASH[i])
|
|
logger.info("(Image %s) Target Image the Same? %s", i, target_image_same)
|
|
|
|
if len(TARGET_FACES_LIST) == 0:
|
|
logger.status(f"Analyzing Target Image {i}...")
|
|
target_face = analyze_faces(target_img)
|
|
TARGET_FACES_LIST = [target_face]
|
|
elif len(TARGET_FACES_LIST) == i and not target_image_same:
|
|
logger.status(f"Analyzing Target Image {i}...")
|
|
target_face = analyze_faces(target_img)
|
|
TARGET_FACES_LIST.append(target_face)
|
|
elif len(TARGET_FACES_LIST) != i and not target_image_same:
|
|
logger.status(f"Analyzing Target Image {i}...")
|
|
target_face = analyze_faces(target_img)
|
|
TARGET_FACES_LIST[i] = target_face
|
|
elif target_image_same:
|
|
logger.status("(Image %s) Using Hashed Target Face(s) Model...", i)
|
|
target_face = TARGET_FACES_LIST[i]
|
|
|
|
|
|
|
|
|
|
if target_face is not None:
|
|
target_faces.append(target_face)
|
|
|
|
|
|
if len(target_faces) == 0:
|
|
logger.status("Cannot detect any Target, skipping swapping...")
|
|
return result_images
|
|
|
|
if source_img is not None:
|
|
|
|
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, order=faces_order[1])
|
|
else:
|
|
|
|
source_face = sorted(source_faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]), reverse = True)[source_faces_index[0]]
|
|
src_wrong_gender = 0
|
|
|
|
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
|
logger.status(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
|
|
elif source_face is not None:
|
|
results = target_imgs
|
|
model_path = model_path = os.path.join(insightface_path, model)
|
|
face_swapper = getFaceSwapModel(model_path)
|
|
|
|
source_face_idx = 0
|
|
|
|
for face_num in faces_index:
|
|
|
|
if face_num >= len(target_faces):
|
|
logger.status("Checked all existing target faces, skipping swapping...")
|
|
break
|
|
|
|
if len(source_faces_index) > 1 and source_face_idx > 0:
|
|
source_face, src_wrong_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, order=faces_order[1])
|
|
source_face_idx += 1
|
|
|
|
if source_face is not None and src_wrong_gender == 0:
|
|
|
|
for i, (target_img, target_face) in enumerate(zip(results, target_faces)):
|
|
target_face_single, wrong_gender = get_face_single(target_img, target_face, face_index=face_num, gender_target=gender_target, order=faces_order[0])
|
|
if target_face_single is not None and wrong_gender == 0:
|
|
result = target_img
|
|
logger.status(f"Swapping {i}...")
|
|
if face_boost_enabled:
|
|
logger.status(f"Face Boost is enabled")
|
|
bgr_fake, M = face_swapper.get(target_img, target_face_single, source_face, paste_back=False)
|
|
bgr_fake, scale = restorer.get_restored_face(bgr_fake, face_restore_model, face_restore_visibility, codeformer_weight, interpolation)
|
|
M *= scale
|
|
result = swapper.in_swap(target_img, bgr_fake, M)
|
|
else:
|
|
|
|
result = face_swapper.get(target_img, target_face_single, source_face)
|
|
results[i] = result
|
|
elif wrong_gender == 1:
|
|
wrong_gender = 0
|
|
logger.status("Wrong target gender detected")
|
|
continue
|
|
else:
|
|
logger.status(f"No target face found for {face_num}")
|
|
elif src_wrong_gender == 1:
|
|
src_wrong_gender = 0
|
|
logger.status("Wrong source gender detected")
|
|
continue
|
|
else:
|
|
logger.status(f"No source face found for face number {source_face_idx}.")
|
|
|
|
result_images = [Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) for result in results]
|
|
|
|
else:
|
|
logger.status("No source face(s) in the provided Index")
|
|
else:
|
|
logger.status("No source face(s) found")
|
|
return result_images
|
|
|