|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
def in_swap(img, bgr_fake, M):
|
|
target_img = img
|
|
IM = cv2.invertAffineTransform(M)
|
|
img_white = np.full((bgr_fake.shape[0], bgr_fake.shape[1]), 255, dtype=np.float32)
|
|
|
|
|
|
bgr_fake = cv2.warpAffine(bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0, flags=cv2.INTER_CUBIC)
|
|
|
|
img_white = cv2.warpAffine(img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
|
|
img_white[img_white > 20] = 255
|
|
img_mask = img_white
|
|
mask_h_inds, mask_w_inds = np.where(img_mask == 255)
|
|
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
|
|
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
|
|
mask_size = int(np.sqrt(mask_h * mask_w))
|
|
k = max(mask_size // 10, 10)
|
|
|
|
|
|
kernel = np.ones((k, k), np.uint8)
|
|
img_mask = cv2.erode(img_mask, kernel, iterations=1)
|
|
kernel = np.ones((2, 2), np.uint8)
|
|
k = max(mask_size // 20, 5)
|
|
|
|
|
|
kernel_size = (k, k)
|
|
blur_size = tuple(2 * i + 1 for i in kernel_size)
|
|
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
|
|
k = 5
|
|
kernel_size = (k, k)
|
|
blur_size = tuple(2 * i + 1 for i in kernel_size)
|
|
img_mask /= 255
|
|
|
|
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
|
|
fake_merged = img_mask * bgr_fake + (1 - img_mask) * target_img.astype(np.float32)
|
|
fake_merged = fake_merged.astype(np.uint8)
|
|
return fake_merged
|
|
|