|
|
|
|
|
|
|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.utils.model_zoo import load_url
|
|
from torchvision import models
|
|
|
|
|
|
|
|
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
|
|
LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth'
|
|
|
|
|
|
class InceptionV3(nn.Module):
|
|
"""Pretrained InceptionV3 network returning feature maps"""
|
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3
|
|
|
|
|
|
BLOCK_INDEX_BY_DIM = {
|
|
64: 0,
|
|
192: 1,
|
|
768: 2,
|
|
2048: 3
|
|
}
|
|
|
|
def __init__(self,
|
|
output_blocks=(DEFAULT_BLOCK_INDEX),
|
|
resize_input=True,
|
|
normalize_input=True,
|
|
requires_grad=False,
|
|
use_fid_inception=True):
|
|
"""Build pretrained InceptionV3.
|
|
|
|
Args:
|
|
output_blocks (list[int]): Indices of blocks to return features of.
|
|
Possible values are:
|
|
- 0: corresponds to output of first max pooling
|
|
- 1: corresponds to output of second max pooling
|
|
- 2: corresponds to output which is fed to aux classifier
|
|
- 3: corresponds to output of final average pooling
|
|
resize_input (bool): If true, bilinearly resizes input to width and
|
|
height 299 before feeding input to model. As the network
|
|
without fully connected layers is fully convolutional, it
|
|
should be able to handle inputs of arbitrary size, so resizing
|
|
might not be strictly needed. Default: True.
|
|
normalize_input (bool): If true, scales the input from range (0, 1)
|
|
to the range the pretrained Inception network expects,
|
|
namely (-1, 1). Default: True.
|
|
requires_grad (bool): If true, parameters of the model require
|
|
gradients. Possibly useful for finetuning the network.
|
|
Default: False.
|
|
use_fid_inception (bool): If true, uses the pretrained Inception
|
|
model used in Tensorflow's FID implementation.
|
|
If false, uses the pretrained Inception model available in
|
|
torchvision. The FID Inception model has different weights
|
|
and a slightly different structure from torchvision's
|
|
Inception model. If you want to compute FID scores, you are
|
|
strongly advised to set this parameter to true to get
|
|
comparable results. Default: True.
|
|
"""
|
|
super(InceptionV3, self).__init__()
|
|
|
|
self.resize_input = resize_input
|
|
self.normalize_input = normalize_input
|
|
self.output_blocks = sorted(output_blocks)
|
|
self.last_needed_block = max(output_blocks)
|
|
|
|
assert self.last_needed_block <= 3, ('Last possible output block index is 3')
|
|
|
|
self.blocks = nn.ModuleList()
|
|
|
|
if use_fid_inception:
|
|
inception = fid_inception_v3()
|
|
else:
|
|
try:
|
|
inception = models.inception_v3(pretrained=True, init_weights=False)
|
|
except TypeError:
|
|
|
|
inception = models.inception_v3(pretrained=True)
|
|
|
|
|
|
block0 = [
|
|
inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3,
|
|
nn.MaxPool2d(kernel_size=3, stride=2)
|
|
]
|
|
self.blocks.append(nn.Sequential(*block0))
|
|
|
|
|
|
if self.last_needed_block >= 1:
|
|
block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)]
|
|
self.blocks.append(nn.Sequential(*block1))
|
|
|
|
|
|
if self.last_needed_block >= 2:
|
|
block2 = [
|
|
inception.Mixed_5b,
|
|
inception.Mixed_5c,
|
|
inception.Mixed_5d,
|
|
inception.Mixed_6a,
|
|
inception.Mixed_6b,
|
|
inception.Mixed_6c,
|
|
inception.Mixed_6d,
|
|
inception.Mixed_6e,
|
|
]
|
|
self.blocks.append(nn.Sequential(*block2))
|
|
|
|
|
|
if self.last_needed_block >= 3:
|
|
block3 = [
|
|
inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c,
|
|
nn.AdaptiveAvgPool2d(output_size=(1, 1))
|
|
]
|
|
self.blocks.append(nn.Sequential(*block3))
|
|
|
|
for param in self.parameters():
|
|
param.requires_grad = requires_grad
|
|
|
|
def forward(self, x):
|
|
"""Get Inception feature maps.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor of shape (b, 3, h, w).
|
|
Values are expected to be in range (-1, 1). You can also input
|
|
(0, 1) with setting normalize_input = True.
|
|
|
|
Returns:
|
|
list[Tensor]: Corresponding to the selected output block, sorted
|
|
ascending by index.
|
|
"""
|
|
output = []
|
|
|
|
if self.resize_input:
|
|
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
|
|
|
|
if self.normalize_input:
|
|
x = 2 * x - 1
|
|
|
|
for idx, block in enumerate(self.blocks):
|
|
x = block(x)
|
|
if idx in self.output_blocks:
|
|
output.append(x)
|
|
|
|
if idx == self.last_needed_block:
|
|
break
|
|
|
|
return output
|
|
|
|
|
|
def fid_inception_v3():
|
|
"""Build pretrained Inception model for FID computation.
|
|
|
|
The Inception model for FID computation uses a different set of weights
|
|
and has a slightly different structure than torchvision's Inception.
|
|
|
|
This method first constructs torchvision's Inception and then patches the
|
|
necessary parts that are different in the FID Inception model.
|
|
"""
|
|
try:
|
|
inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False)
|
|
except TypeError:
|
|
|
|
inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False)
|
|
|
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
|
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
|
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
|
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
|
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
|
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
|
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
|
|
inception.Mixed_7b = FIDInceptionE_1(1280)
|
|
inception.Mixed_7c = FIDInceptionE_2(2048)
|
|
|
|
if os.path.exists(LOCAL_FID_WEIGHTS):
|
|
state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage)
|
|
else:
|
|
state_dict = load_url(FID_WEIGHTS_URL, progress=True)
|
|
|
|
inception.load_state_dict(state_dict)
|
|
return inception
|
|
|
|
|
|
class FIDInceptionA(models.inception.InceptionA):
|
|
"""InceptionA block patched for FID computation"""
|
|
|
|
def __init__(self, in_channels, pool_features):
|
|
super(FIDInceptionA, self).__init__(in_channels, pool_features)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch5x5 = self.branch5x5_1(x)
|
|
branch5x5 = self.branch5x5_2(branch5x5)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class FIDInceptionC(models.inception.InceptionC):
|
|
"""InceptionC block patched for FID computation"""
|
|
|
|
def __init__(self, in_channels, channels_7x7):
|
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch7x7 = self.branch7x7_1(x)
|
|
branch7x7 = self.branch7x7_2(branch7x7)
|
|
branch7x7 = self.branch7x7_3(branch7x7)
|
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x)
|
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
|
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class FIDInceptionE_1(models.inception.InceptionE):
|
|
"""First InceptionE block patched for FID computation"""
|
|
|
|
def __init__(self, in_channels):
|
|
super(FIDInceptionE_1, self).__init__(in_channels)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3 = [
|
|
self.branch3x3_2a(branch3x3),
|
|
self.branch3x3_2b(branch3x3),
|
|
]
|
|
branch3x3 = torch.cat(branch3x3, 1)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = [
|
|
self.branch3x3dbl_3a(branch3x3dbl),
|
|
self.branch3x3dbl_3b(branch3x3dbl),
|
|
]
|
|
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class FIDInceptionE_2(models.inception.InceptionE):
|
|
"""Second InceptionE block patched for FID computation"""
|
|
|
|
def __init__(self, in_channels):
|
|
super(FIDInceptionE_2, self).__init__(in_channels)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3 = [
|
|
self.branch3x3_2a(branch3x3),
|
|
self.branch3x3_2b(branch3x3),
|
|
]
|
|
branch3x3 = torch.cat(branch3x3, 1)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = [
|
|
self.branch3x3dbl_3a(branch3x3dbl),
|
|
self.branch3x3dbl_3b(branch3x3dbl),
|
|
]
|
|
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|