Spaces:
Runtime error
Runtime error
Update mini.py
Browse files
mini.py
CHANGED
@@ -3,12 +3,10 @@ import torch
|
|
3 |
import spaces
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
-
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
|
7 |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
8 |
from flux.transformer_flux_simple import FluxTransformer2DModel
|
9 |
from flux.pipeline_flux_chameleon_og import FluxPipeline
|
10 |
-
from flux.pipeline_flux_img2img import FluxImg2ImgPipeline
|
11 |
-
|
12 |
import torch.nn as nn
|
13 |
import math
|
14 |
import logging
|
@@ -31,9 +29,6 @@ MODEL_CACHE_DIR = "model_cache"
|
|
31 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
DTYPE = torch.bfloat16
|
33 |
|
34 |
-
quant_config = BitsAndBytesConfig(load_in_8bit=True,)
|
35 |
-
|
36 |
-
|
37 |
# Aspect ratio options
|
38 |
ASPECT_RATIOS = {
|
39 |
"1:1": (1024, 1024),
|
@@ -86,12 +81,11 @@ tokenizer_two = T5TokenizerFast.from_pretrained(
|
|
86 |
|
87 |
# Load larger models to CPU
|
88 |
vae = AutoencoderKL.from_pretrained(
|
89 |
-
os.path.join(MODEL_CACHE_DIR, "flux/vae")
|
90 |
).to(DTYPE).cpu()
|
91 |
|
92 |
transformer = FluxTransformer2DModel.from_pretrained(
|
93 |
-
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
|
94 |
-
quantization_config=quant_config,
|
95 |
).to(DTYPE).cpu()
|
96 |
|
97 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
@@ -101,8 +95,7 @@ scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
|
101 |
|
102 |
# Load Qwen2VL to CPU
|
103 |
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
104 |
-
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
|
105 |
-
quantization_config=quant_config,
|
106 |
).to(DTYPE).cpu()
|
107 |
|
108 |
# Load connector and embedder
|
|
|
3 |
import spaces
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
+
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
|
7 |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
8 |
from flux.transformer_flux_simple import FluxTransformer2DModel
|
9 |
from flux.pipeline_flux_chameleon_og import FluxPipeline
|
|
|
|
|
10 |
import torch.nn as nn
|
11 |
import math
|
12 |
import logging
|
|
|
29 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
DTYPE = torch.bfloat16
|
31 |
|
|
|
|
|
|
|
32 |
# Aspect ratio options
|
33 |
ASPECT_RATIOS = {
|
34 |
"1:1": (1024, 1024),
|
|
|
81 |
|
82 |
# Load larger models to CPU
|
83 |
vae = AutoencoderKL.from_pretrained(
|
84 |
+
os.path.join(MODEL_CACHE_DIR, "flux/vae")
|
85 |
).to(DTYPE).cpu()
|
86 |
|
87 |
transformer = FluxTransformer2DModel.from_pretrained(
|
88 |
+
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
|
|
|
89 |
).to(DTYPE).cpu()
|
90 |
|
91 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
|
|
95 |
|
96 |
# Load Qwen2VL to CPU
|
97 |
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
98 |
+
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
|
|
|
99 |
).to(DTYPE).cpu()
|
100 |
|
101 |
# Load connector and embedder
|