Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,943 Bytes
2314f9b ea0d88d 2314f9b ea0d88d 2314f9b ea0d88d 2314f9b ea0d88d 2314f9b ea0d88d 2314f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import spaces
import gradio as gr
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from gradio_image_prompter import ImagePrompter
# def preprocess_image(image):
# return image, gr.State([]), gr.State([]), image
def preprocess_image(image):
return image, [], [], image
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
# Extract x, y coordinates from evt.index
x, y = evt.index
# Add the point as [x, y]
tracking_points.append([x, y])
print(f"TRACKING POINTS: {tracking_points}")
if point_type == "include":
trackings_input_label.append(1)
elif point_type == "exclude":
trackings_input_label.append(0)
print(f"TRACKING INPUT LABELS: {trackings_input_label}")
# Open the image and get its dimensions
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points):
if trackings_input_label[index] == 1:
cv2.circle(transparent_layer, tuple(track), radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, tuple(track), radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = [] # List to store filenames of images with masks overlaid
mask_images = [] # List to store filenames of separate mask images
for i, (mask, score) in enumerate(zip(masks, scores)):
# ---- Original Image with Mask Overlaid ----
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# Save the figure as a JPG file
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close() # Close the figure to free up memory
# ---- Separate Mask Image (White Mask on Black Background) ----
# Create a black image
mask_image = np.zeros_like(image, dtype=np.uint8)
# The mask is a binary array where the masked area is 1, else 0.
# Convert the mask to a white color in the mask_image
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3): # Assuming RGB, repeat mask for all channels
mask_image[:, :, c] = mask_layer
# Save the mask image
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
plt.close() # Close the figure to free up memory
return combined_images, mask_images
@spaces.GPU()
def sam_process(original_image, points, labels):
print(f"Points: {points}")
print(f"Labels: {labels}")
if not points or not labels:
print("No points or labels provided, returning None")
return None
# Convert image to numpy array for SAM2 processing
image = np.array(original_image)
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
predictor.set_image(image)
input_point = np.array(points)
input_label = np.array(labels)
try:
masks, scores, _ = predictor.predict(input_point, input_label, multimask_output=False)
except Exception as e:
print(f"Error during prediction: {e}")
return None
sorted_indices = np.argsort(scores)[::-1]
masks = masks[sorted_indices]
if masks and len(masks) > 0:
mask = masks[0] * 255
mask_image = Image.fromarray(mask.astype(np.uint8))
return mask_image
else:
print("No masks generated, returning None")
return None
def create_sam2_tab():
first_frame = gr.State() # Tracks original image
tracking_points = gr.State([])
trackings_input_label = gr.State([])
with gr.Column():
gr.Markdown("# SAM2 Image Predictor")
gr.Markdown("1. Upload your image\n2. Click points to mask\n3. Submit")
points_map = gr.Image(label="Points Map", type="pil", interactive=True)
input_image = gr.Image(type="pil", visible=False) # Original image
with gr.Row():
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type")
clear_button = gr.Button("Clear Points")
submit_button = gr.Button("Submit")
output_image = gr.Image("Segmented Output")
# Event handlers
points_map.upload(
lambda img: (img, img, [], []),
inputs=points_map,
outputs=[input_image, first_frame, tracking_points, trackings_input_label]
)
clear_button.click(
lambda img: ([], [], img),
inputs=first_frame,
outputs=[tracking_points, trackings_input_label, points_map]
)
points_map.select(
get_point,
inputs=[point_type, tracking_points, trackings_input_label, first_frame],
outputs=[tracking_points, trackings_input_label, points_map]
)
submit_button.click(
sam_process,
inputs=[input_image, tracking_points, trackings_input_label],
outputs=output_image
)
return input_image, points_map, output_image
|