# logging.py import os import uuid import time from huggingface_hub import CommitScheduler, HfApi from PIL import Image import numpy as np from diffusers.utils import load_image APP_VERSION = "0_4" HF_DATASET_REPO = "LPX55/upscaler_logs" # Change to your dataset repo HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") # Make sure this is set in your environment LOG_DIR = "logs_" + APP_VERSION IMAGE_DIR = os.path.join(LOG_DIR, "upscaler") LOG_FILE = os.path.join(LOG_DIR, f"{int(time.time())}-logs.csv") api = HfApi(token=HF_TOKEN) scheduler = CommitScheduler( repo_id=HF_DATASET_REPO, repo_type="dataset", folder_path=LOG_DIR, every=5, private=True, token=HF_TOKEN, path_in_repo="v" + APP_VERSION ) # def cache_temp(img_id): # api.upload_file( # path_or_fileobj=os.path.join("/tmp/gradio", f"{img_id}"), # path_in_repo="/v" + APP_VERSION + "/" + img_id, # repo_id=HF_DATASET_REPO, # repo_type="dataset", # token=HF_TOKEN, # ) def save_image(image_id, image_path: Image.Image) -> None: os.makedirs(IMAGE_DIR, exist_ok=True) print("Image ID: " + image_id) print("Image ID Type: " + str(type(image_id))) save_image_path = os.path.join(IMAGE_DIR, f"{image_id}") print("Save image path: " + save_image_path) try: loaded = load_image(image_path) cache_file = "/tmp/gradio/" + str(uuid.uuid4()) + ".png" loaded.save(cache_file, "PNG") print("Loaded Type: " + str(type(loaded))) with scheduler.lock: try: # cache_temp(cache_file) #print("Cache path: " + cache_file) #print("Type: " + str(type(cache_file))) img2 = Image.open(cache_file) img2.save(save_image_path) print(f"Saved image: {save_image_path}") except Exception as e: print(f"Error saving image: {str(e)}") except Exception as e: print(f"Error loading image: {str(e)}") def log_params( prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, before_image, after_image, user=None ): before_id = str(uuid.uuid4()) + "_before.png" after_id = str(uuid.uuid4()) + "_after.png" before_path = os.path.join(IMAGE_DIR, before_id) after_path = os.path.join(IMAGE_DIR, after_id) print("Type before: " + str(type(before_image))) print("Type after: " + str(type(after_image))) save_image(before_id, before_image) save_image(after_id, after_image) #print("Before path: " + before_path) #print("After path: " + after_path) is_new = not os.path.exists(LOG_FILE) with open(LOG_FILE, "a", newline='') as f: import csv writer = csv.writer(f) if is_new: writer.writerow([ "timestamp", "user", "prompt", "scale", "steps", "controlnet_conditioning_scale", "guidance_scale", "seed", "guidance_end", "before_image", "after_image" ]) writer.writerow([ time.strftime("%Y-%m-%dT%H:%M:%S"), user or "anonymous", prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, before_path, after_path ])