import subprocess # subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) import torch import spaces import os import datetime import io import moondream as md from datasets import load_dataset, Dataset, DatasetDict, Image as HFImage from diffusers.utils import load_image from diffusers.hooks import apply_group_offloading from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig from transformers import T5EncoderModel from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig # from liger_kernel.transformers import apply_liger_kernel_to_llama from PIL import Image from threading import Thread from typing import Generator # from peft import PeftModel, PeftConfig import gradio as gr from huggingface_hub import CommitScheduler, HfApi, logging from debug import log_params, scheduler, save_image logging.set_verbosity_debug() huggingface_token = os.getenv("HUGGINFACE_TOKEN") MAX_SEED = 1000000 md_api_key = os.getenv("MD_KEY") model = md.vl(api_key=md_api_key) text_encoder_2_unquant = T5EncoderModel.from_pretrained( "LPX55/FLUX.1-merged_uncensored", subfolder="text_encoder_2", torch_dtype=torch.bfloat16, token=huggingface_token ) pipe = FluxControlNetPipeline.from_pretrained( "LPX55/FLUX.1M-8step_upscaler-cnet", torch_dtype=torch.bfloat16, text_encoder_2=text_encoder_2_unquant, token=huggingface_token ) pipe.to("cuda") # torch._dynamo.config.suppress_errors = True # For FLUX models, compiling VAE decode can also be beneficial if needed, though UNet is primary. # pipe.vae.decode = torch.compile(pipe.vae.decode, mode="reduce-overhead", fullgraph=True) # Uncomment if VAE compile helps # try: # pipe.vae.decode = torch.compile(pipe.vae.decode, mode="default") # except Exception as e: # print(f"Compile failed: {e}") # 2. Memory Efficient Attention (xFormers): Reduces memory usage and improves speed # Requires xformers library installation. Beneficial even with high VRAM. try: pipe.enable_xformers_memory_efficient_attention() except Exception as e: print(f"XFormers not available, skipping memory efficient attention: {e}") # 3. Attention Slicing: Recommended for FLUX models and high-resolution images, # even with ample VRAM, as it can sometimes help with very large tensors. pipe.enable_attention_slicing() @spaces.GPU(duration=12) @torch.no_grad() def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end): generator = torch.Generator().manual_seed(seed) # Load control image control_image = load_image(control_image) w, h = control_image.size w = w - w % 32 h = h - h % 32 control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1])) print(f"PromptLog: {repr(prompt)}") with torch.inference_mode(): image = pipe( generator=generator, prompt=prompt, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=steps, guidance_scale=guidance_scale, height=control_image.size[1], width=control_image.size[0], control_guidance_start=0.0, control_guidance_end=guidance_end, ).images[0] # print("Type: " + str(type(image))) return image def combine_caption_focus(caption, focus): if caption is None: caption = "" if focus is None: focus = "highly detailed photo, raw photography." return (str(caption) + "\n\n" + str(focus)).strip() def generate_caption(control_image): if control_image is None: return None, None # Generate a detailed caption mcaption = model.caption(control_image, length="short") detailed_caption = mcaption["caption"] print(f"Detailed caption: {detailed_caption}") return detailed_caption def generate_focus(control_image, focus_list): if control_image is None: return None if focus_list is None: return "" # Generate a detailed caption focus_query = model.query(control_image, "Please provide a concise but illustrative description of the following area(s) of focus: " + focus_list) focus_description = focus_query["answer"] print(f"Areas of focus: {focus_description}") return focus_description def process_image(control_image, user_prompt, system_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, temperature, top_p, max_new_tokens, log_prompt): # Initialize with empty caption final_prompt = user_prompt.strip() # If no user prompt provided, generate a caption first if not final_prompt: # Generate a detailed caption print("Generating caption...") mcaption = model.caption(control_image, length="normal") detailed_caption = mcaption["caption"] final_prompt = detailed_caption yield f"Using caption: {final_prompt}", None, final_prompt # Show the final prompt being used yield f"Generating with: {final_prompt}", None, final_prompt # Generate the image try: image = generate_image( prompt=final_prompt, scale=scale, steps=steps, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, guidance_scale=guidance_scale, seed=seed, guidance_end=guidance_end ) try: debug_img = Image.open(image.save("/tmp/" + str(seed) + "output.png")) save_image("/tmp/" + str(seed) + "output.png", debug_img) except Exception as e: print("Error 160: " + str(e)) log_params(final_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, control_image, image) yield f"Completed! Used prompt: {final_prompt}", image, final_prompt except Exception as e: print("Error: " + str(e)) yield f"Error: {str(e)}", None, None with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as demo: gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY") with gr.Row(): with gr.Accordion(): control_image = gr.Image(type="pil", label="Control Image", show_label=False) with gr.Accordion(): generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False) with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox(lines=4, info="Enter your prompt here or wait for auto-generation...", label="Image Description") focus = gr.Textbox(label="Area(s) of Focus", info="e.g. 'face', 'eyes', 'hair', 'clothes', 'background', etc.", value="clothing material, textures, ethnicity") scale = gr.Slider(1, 3, value=1, label="Scale (Upscale Factor)", step=0.25) with gr.Row(): generate_button = gr.Button("Generate Image", variant="primary") caption_button = gr.Button("Generate Caption", variant="secondary") with gr.Column(scale=1): seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1) steps = gr.Slider(2, 16, value=8, label="Steps", step=1) controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale") guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale") guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End") with gr.Row(): with gr.Accordion("Auto-Caption settings", open=False, visible=False): system_prompt = gr.Textbox( lines=4, value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.", label="System Prompt for Captioning", visible=False # Changed to visible ) temperature_slider = gr.Slider( minimum=0.0, maximum=2.0, value=0.6, step=0.05, label="Temperature", info="Higher values make the output more random, lower values make it more deterministic.", visible=False # Changed to visible ) top_p_slider = gr.Slider( minimum=0.0, maximum=1.0, value=0.9, step=0.01, label="Top-p", visible=False # Changed to visible ) max_tokens_slider = gr.Slider( minimum=1, maximum=2048, value=368, step=1, label="Max New Tokens", info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.", visible=False # Changed to visible ) log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible gr.Markdown("**Tips:** 8 steps is all you need! Incredibly powerful tool, usage instructions coming soon.") caption_state = gr.State() focus_state = gr.State() log_state = gr.State() generate_button.click( fn=process_image, inputs=[ control_image, prompt, system_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt ], outputs=[log_state, generated_image, prompt] ) control_image.input( generate_caption, inputs=[control_image], outputs=[caption_state] ).then( generate_focus, inputs=[control_image, focus], outputs=[focus_state] ).then( combine_caption_focus, inputs=[caption_state, focus_state], outputs=[prompt] ) caption_button.click( fn=generate_caption, inputs=[control_image], outputs=[prompt] ).then( generate_focus, inputs=[control_image, focus], outputs=[focus_state] ).then( combine_caption_focus, inputs=[caption_state, focus_state], outputs=[prompt] ) demo.launch(show_error=True)