import torch import spaces import os from diffusers.utils import load_image from diffusers.hooks import apply_group_offloading from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig from transformers import T5EncoderModel from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig from liger_kernel.transformers import apply_liger_kernel_to_llama from PIL import Image from threading import Thread from typing import Generator from peft import PeftModel, PeftConfig import gradio as gr huggingface_token = os.getenv("HUGGINFACE_TOKEN") MAX_SEED = 1000000 MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava" cap_processor = AutoProcessor.from_pretrained(MODEL_PATH) cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0) assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}" cap_model.eval() apply_liger_kernel_to_llama(model=cap_model.language_model) text_encoder_2_unquant = T5EncoderModel.from_pretrained( "LPX55/FLUX.1-merged_uncensored", subfolder="text_encoder_2", torch_dtype=torch.bfloat16, token=huggingface_token ) pipe = FluxControlNetPipeline.from_pretrained( "LPX55/FLUX.1M-8step_upscaler-cnet", torch_dtype=torch.bfloat16, text_encoder_2=text_encoder_2_unquant, token=huggingface_token ) pipe.to("cuda") @spaces.GPU() @torch.no_grad() def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]: torch.cuda.empty_cache() if input_image is None: yield "No image provided. Please upload an image." return if log_prompt: print(f"PromptLog: {repr(prompt)}") convo = [ { "role": "system", "content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.", }, { "role": "user", "content": prompt.strip(), }, ] convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True) assert isinstance(convo_string, str) inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda') inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16) streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( **inputs, max_new_tokens=max_new_tokens, do_sample=True if temperature > 0 else False, suppress_tokens=None, use_cache=True, temperature=temperature if temperature > 0 else None, top_k=None, top_p=top_p if temperature > 0 else None, streamer=streamer, ) _= cap_model.generate(**generate_kwargs) output = cap_model.generate(**generate_kwargs) print(f"Generated {len(output[0])} tokens") @spaces.GPU(duration=10) @torch.no_grad() def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end): generator = torch.Generator().manual_seed(seed) # Load control image control_image = load_image(control_image) w, h = control_image.size w = w - w % 32 h = h - h % 32 control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1])) with torch.inference_mode(): image = pipe( generator=generator, prompt=prompt, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=steps, guidance_scale=guidance_scale, height=control_image.size[1], width=control_image.size[0], control_guidance_start=0.0, control_guidance_end=guidance_end, ).images[0] return image def process_image(control_image, user_prompt, system_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, temperature, top_p, max_new_tokens, log_prompt): # Initialize with empty caption final_prompt = user_prompt.strip() # If no user prompt provided, generate a caption first if not final_prompt: # Generate caption caption_gen = caption( input_image=control_image, prompt=system_prompt, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, log_prompt=log_prompt ) # Get the full caption by exhausting the generator generated_caption = "" for chunk in caption_gen: generated_caption += chunk yield generated_caption, None # Update caption in real-time final_prompt = generated_caption yield f"Using caption: {final_prompt}", None # Show the final prompt being used yield f"Generating with: {final_prompt}", None # Generate the image try: image = generate_image( prompt=final_prompt, scale=scale, steps=steps, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, guidance_scale=guidance_scale, seed=seed, guidance_end=guidance_end ) yield f"Completed! Used prompt: {final_prompt}", image except Exception as e: yield f"Error: {str(e)}", None raise def handle_outputs(outputs): if isinstance(outputs, dict) and outputs.get("__type__") == "update_caption": return outputs["caption"], None return outputs with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as iface: gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY") with gr.Row(): control_image = gr.Image(type="pil", label="Control Image", show_label=False) generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False) with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt") output_caption = gr.Textbox(label="Caption") scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25) generate_button = gr.Button("Generate Image", variant="primary") caption_button = gr.Button("Generate Caption", variant="secondary") with gr.Column(scale=1): seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1) steps = gr.Slider(2, 16, value=8, label="Steps") controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale") guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale") guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End") with gr.Row(): with gr.Accordion("Generation settings", open=False): system_prompt = gr.Textbox( lines=4, value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.", label="System Prompt for Captioning", visible=True # Changed to visible ) temperature_slider = gr.Slider( minimum=0.0, maximum=2.0, value=0.6, step=0.05, label="Temperature", info="Higher values make the output more random, lower values make it more deterministic.", visible=True # Changed to visible ) top_p_slider = gr.Slider( minimum=0.0, maximum=1.0, value=0.9, step=0.01, label="Top-p", visible=True # Changed to visible ) max_tokens_slider = gr.Slider( minimum=1, maximum=2048, value=368, step=1, label="Max New Tokens", info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.", visible=False # Changed to visible ) log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible gr.Markdown("**Tips:** 8 steps is all you need!") generate_button.click( fn=process_image, inputs=[ control_image, prompt, system_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt ], outputs=[output_caption, generated_image] ) caption_button.click( fn=caption, inputs=[control_image, system_prompt, temperature_slider, top_p_slider, max_tokens_slider, log_prompt], outputs=output_caption, ) iface.launch()