Spaces:
Running
on
Zero
Running
on
Zero
Update app_v3.py
Browse files
app_v3.py
CHANGED
@@ -23,7 +23,6 @@ from typing import Generator
|
|
23 |
import gradio as gr
|
24 |
from huggingface_hub import CommitScheduler, HfApi, logging
|
25 |
from debug import log_params, scheduler
|
26 |
-
import torch._dynamo
|
27 |
logging.set_verbosity_debug()
|
28 |
|
29 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
@@ -47,13 +46,13 @@ pipe = FluxControlNetPipeline.from_pretrained(
|
|
47 |
)
|
48 |
pipe.to("cuda")
|
49 |
|
50 |
-
torch._dynamo.config.suppress_errors = True
|
51 |
# For FLUX models, compiling VAE decode can also be beneficial if needed, though UNet is primary.
|
52 |
# pipe.vae.decode = torch.compile(pipe.vae.decode, mode="reduce-overhead", fullgraph=True) # Uncomment if VAE compile helps
|
53 |
-
try:
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
|
57 |
|
58 |
# 2. Memory Efficient Attention (xFormers): Reduces memory usage and improves speed
|
59 |
# Requires xformers library installation. Beneficial even with high VRAM.
|
|
|
23 |
import gradio as gr
|
24 |
from huggingface_hub import CommitScheduler, HfApi, logging
|
25 |
from debug import log_params, scheduler
|
|
|
26 |
logging.set_verbosity_debug()
|
27 |
|
28 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
|
|
46 |
)
|
47 |
pipe.to("cuda")
|
48 |
|
49 |
+
# torch._dynamo.config.suppress_errors = True
|
50 |
# For FLUX models, compiling VAE decode can also be beneficial if needed, though UNet is primary.
|
51 |
# pipe.vae.decode = torch.compile(pipe.vae.decode, mode="reduce-overhead", fullgraph=True) # Uncomment if VAE compile helps
|
52 |
+
# try:
|
53 |
+
# pipe.vae.decode = torch.compile(pipe.vae.decode, mode="default")
|
54 |
+
# except Exception as e:
|
55 |
+
# print(f"Compile failed: {e}")
|
56 |
|
57 |
# 2. Memory Efficient Attention (xFormers): Reduces memory usage and improves speed
|
58 |
# Requires xformers library installation. Beneficial even with high VRAM.
|