LPX55 commited on
Commit
aa01e1d
·
1 Parent(s): 98ee0ed
Files changed (1) hide show
  1. app_v3.py +45 -45
app_v3.py CHANGED
@@ -1,7 +1,7 @@
1
- import torch
2
  import subprocess
3
  subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
4
 
 
5
  import spaces
6
  import os
7
  import moondream as md
@@ -46,45 +46,45 @@ pipe = FluxControlNetPipeline.from_pretrained(
46
  )
47
  pipe.to("cuda")
48
 
49
- @spaces.GPU()
50
- @torch.no_grad()
51
- def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
52
- torch.cuda.empty_cache()
53
- if input_image is None:
54
- yield "No image provided. Please upload an image."
55
- return
56
- if log_prompt:
57
- print(f"PromptLog: {repr(prompt)}")
58
- convo = [
59
- {
60
- "role": "system",
61
- "content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.",
62
- },
63
- {
64
- "role": "user",
65
- "content": prompt.strip(),
66
- },
67
- ]
68
- convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
69
- assert isinstance(convo_string, str)
70
- inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda')
71
- inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
72
- streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
73
- generate_kwargs = dict(
74
- **inputs,
75
- max_new_tokens=max_new_tokens,
76
- do_sample=True if temperature > 0 else False,
77
- suppress_tokens=None,
78
- use_cache=True,
79
- temperature=temperature if temperature > 0 else None,
80
- top_k=None,
81
- top_p=top_p if temperature > 0 else None,
82
- streamer=streamer,
83
- )
84
- _= cap_model.generate(**generate_kwargs)
85
 
86
- output = cap_model.generate(**generate_kwargs)
87
- print(f"Generated {len(output[0])} tokens")
88
 
89
  @spaces.GPU(duration=10)
90
  @torch.no_grad()
@@ -226,10 +226,10 @@ with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as iface:
226
  outputs=[output_caption, generated_image]
227
  )
228
 
229
- caption_button.click(
230
- fn=caption,
231
- inputs=[control_image, system_prompt, temperature_slider, top_p_slider, max_tokens_slider, log_prompt],
232
- outputs=output_caption,
233
- )
234
 
235
- iface.launch(share=True)
 
 
1
  import subprocess
2
  subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
3
 
4
+ import torch
5
  import spaces
6
  import os
7
  import moondream as md
 
46
  )
47
  pipe.to("cuda")
48
 
49
+ # @spaces.GPU()
50
+ # @torch.no_grad()
51
+ # def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
52
+ # torch.cuda.empty_cache()
53
+ # if input_image is None:
54
+ # yield "No image provided. Please upload an image."
55
+ # return
56
+ # if log_prompt:
57
+ # print(f"PromptLog: {repr(prompt)}")
58
+ # convo = [
59
+ # {
60
+ # "role": "system",
61
+ # "content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.",
62
+ # },
63
+ # {
64
+ # "role": "user",
65
+ # "content": prompt.strip(),
66
+ # },
67
+ # ]
68
+ # convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
69
+ # assert isinstance(convo_string, str)
70
+ # inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda')
71
+ # inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
72
+ # streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
73
+ # generate_kwargs = dict(
74
+ # **inputs,
75
+ # max_new_tokens=max_new_tokens,
76
+ # do_sample=True if temperature > 0 else False,
77
+ # suppress_tokens=None,
78
+ # use_cache=True,
79
+ # temperature=temperature if temperature > 0 else None,
80
+ # top_k=None,
81
+ # top_p=top_p if temperature > 0 else None,
82
+ # streamer=streamer,
83
+ # )
84
+ # _= cap_model.generate(**generate_kwargs)
85
 
86
+ # output = cap_model.generate(**generate_kwargs)
87
+ # print(f"Generated {len(output[0])} tokens")
88
 
89
  @spaces.GPU(duration=10)
90
  @torch.no_grad()
 
226
  outputs=[output_caption, generated_image]
227
  )
228
 
229
+ # caption_button.click(
230
+ # fn=caption,
231
+ # inputs=[control_image, system_prompt, temperature_slider, top_p_slider, max_tokens_slider, log_prompt],
232
+ # outputs=output_caption,
233
+ # )
234
 
235
+ iface.launch()