Spaces:
Running
on
Zero
Running
on
Zero
testing: 3rd iter
Browse files- README.md +1 -1
- app_v3.py +224 -0
- requirements.txt +2 -1
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: green
|
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.1
|
8 |
-
app_file:
|
9 |
pinned: true
|
10 |
license: other
|
11 |
tags:
|
|
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.1
|
8 |
+
app_file: app_v3.py
|
9 |
pinned: true
|
10 |
license: other
|
11 |
tags:
|
app_v3.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import spaces
|
3 |
+
import os
|
4 |
+
from diffusers.utils import load_image
|
5 |
+
from diffusers.hooks import apply_group_offloading
|
6 |
+
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
|
7 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
8 |
+
from transformers import T5EncoderModel
|
9 |
+
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
|
10 |
+
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
11 |
+
from liger_kernel.transformers import apply_liger_kernel_to_llama
|
12 |
+
from PIL import Image
|
13 |
+
from threading import Thread
|
14 |
+
from typing import Generator
|
15 |
+
from peft import PeftModel, PeftConfig
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
19 |
+
MAX_SEED = 1000000
|
20 |
+
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
|
21 |
+
cap_processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
22 |
+
cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
|
23 |
+
assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}"
|
24 |
+
cap_model.eval()
|
25 |
+
apply_liger_kernel_to_llama(model=cap_model.language_model)
|
26 |
+
|
27 |
+
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
|
28 |
+
"LPX55/FLUX.1-merged_uncensored",
|
29 |
+
subfolder="text_encoder_2",
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
token=huggingface_token
|
32 |
+
)
|
33 |
+
|
34 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
35 |
+
"LPX55/FLUX.1M-8step_upscaler-cnet",
|
36 |
+
torch_dtype=torch.bfloat16,
|
37 |
+
text_encoder_2=text_encoder_2_unquant,
|
38 |
+
token=huggingface_token
|
39 |
+
)
|
40 |
+
pipe.to("cuda")
|
41 |
+
|
42 |
+
@spaces.GPU()
|
43 |
+
@torch.no_grad()
|
44 |
+
def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
|
45 |
+
torch.cuda.empty_cache()
|
46 |
+
if input_image is None:
|
47 |
+
yield "No image provided. Please upload an image."
|
48 |
+
return
|
49 |
+
if log_prompt:
|
50 |
+
print(f"PromptLog: {repr(prompt)}")
|
51 |
+
convo = [
|
52 |
+
{
|
53 |
+
"role": "system",
|
54 |
+
"content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.",
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"role": "user",
|
58 |
+
"content": prompt.strip(),
|
59 |
+
},
|
60 |
+
]
|
61 |
+
convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
|
62 |
+
assert isinstance(convo_string, str)
|
63 |
+
inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda')
|
64 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
65 |
+
streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
66 |
+
generate_kwargs = dict(
|
67 |
+
**inputs,
|
68 |
+
max_new_tokens=max_new_tokens,
|
69 |
+
do_sample=True if temperature > 0 else False,
|
70 |
+
suppress_tokens=None,
|
71 |
+
use_cache=True,
|
72 |
+
temperature=temperature if temperature > 0 else None,
|
73 |
+
top_k=None,
|
74 |
+
top_p=top_p if temperature > 0 else None,
|
75 |
+
streamer=streamer,
|
76 |
+
)
|
77 |
+
_= cap_model.generate(**generate_kwargs)
|
78 |
+
|
79 |
+
output = cap_model.generate(**generate_kwargs)
|
80 |
+
print(f"Generated {len(output[0])} tokens")
|
81 |
+
|
82 |
+
@spaces.GPU(duration=10)
|
83 |
+
@torch.no_grad()
|
84 |
+
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
|
85 |
+
generator = torch.Generator().manual_seed(seed)
|
86 |
+
# Load control image
|
87 |
+
control_image = load_image(control_image)
|
88 |
+
w, h = control_image.size
|
89 |
+
w = w - w % 32
|
90 |
+
h = h - h % 32
|
91 |
+
control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
|
92 |
+
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
|
93 |
+
print(f"PromptLog: {repr(prompt)}")
|
94 |
+
with torch.inference_mode():
|
95 |
+
image = pipe(
|
96 |
+
generator=generator,
|
97 |
+
prompt=prompt,
|
98 |
+
control_image=control_image,
|
99 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
100 |
+
num_inference_steps=steps,
|
101 |
+
guidance_scale=guidance_scale,
|
102 |
+
height=control_image.size[1],
|
103 |
+
width=control_image.size[0],
|
104 |
+
control_guidance_start=0.0,
|
105 |
+
control_guidance_end=guidance_end,
|
106 |
+
).images[0]
|
107 |
+
return image
|
108 |
+
|
109 |
+
def process_image(control_image, user_prompt, system_prompt, scale, steps,
|
110 |
+
controlnet_conditioning_scale, guidance_scale, seed,
|
111 |
+
guidance_end, temperature, top_p, max_new_tokens, log_prompt):
|
112 |
+
# Initialize with empty caption
|
113 |
+
final_prompt = user_prompt.strip()
|
114 |
+
|
115 |
+
# If no user prompt provided, generate a caption first
|
116 |
+
if not final_prompt:
|
117 |
+
# Generate caption
|
118 |
+
caption_gen = caption(
|
119 |
+
input_image=control_image,
|
120 |
+
prompt=system_prompt,
|
121 |
+
temperature=temperature,
|
122 |
+
top_p=top_p,
|
123 |
+
max_new_tokens=max_new_tokens,
|
124 |
+
log_prompt=log_prompt
|
125 |
+
)
|
126 |
+
|
127 |
+
# Get the full caption by exhausting the generator
|
128 |
+
generated_caption = ""
|
129 |
+
for chunk in caption_gen:
|
130 |
+
generated_caption += chunk
|
131 |
+
yield generated_caption, None # Update caption in real-time
|
132 |
+
|
133 |
+
final_prompt = generated_caption
|
134 |
+
yield f"Using caption: {final_prompt}", None
|
135 |
+
|
136 |
+
# Show the final prompt being used
|
137 |
+
yield f"Generating with: {final_prompt}", None
|
138 |
+
|
139 |
+
# Generate the image
|
140 |
+
try:
|
141 |
+
image = generate_image(
|
142 |
+
prompt=final_prompt,
|
143 |
+
scale=scale,
|
144 |
+
steps=steps,
|
145 |
+
control_image=control_image,
|
146 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
147 |
+
guidance_scale=guidance_scale,
|
148 |
+
seed=seed,
|
149 |
+
guidance_end=guidance_end
|
150 |
+
)
|
151 |
+
yield f"Completed! Used prompt: {final_prompt}", image
|
152 |
+
except Exception as e:
|
153 |
+
yield f"Error: {str(e)}", None
|
154 |
+
raise
|
155 |
+
|
156 |
+
def handle_outputs(outputs):
|
157 |
+
if isinstance(outputs, dict) and outputs.get("__type__") == "update_caption":
|
158 |
+
return outputs["caption"], None
|
159 |
+
return outputs
|
160 |
+
|
161 |
+
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as iface:
|
162 |
+
gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
|
163 |
+
with gr.Row():
|
164 |
+
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
|
165 |
+
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column(scale=1):
|
168 |
+
prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
|
169 |
+
output_caption = gr.Textbox(label="Caption")
|
170 |
+
scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
|
171 |
+
generate_button = gr.Button("Generate Image", variant="primary")
|
172 |
+
caption_button = gr.Button("Generate Caption", variant="secondary")
|
173 |
+
with gr.Column(scale=1):
|
174 |
+
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
|
175 |
+
steps = gr.Slider(2, 16, value=8, label="Steps", step=1)
|
176 |
+
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
|
177 |
+
guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
|
178 |
+
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
|
179 |
+
with gr.Row():
|
180 |
+
with gr.Accordion("Generation settings", open=False):
|
181 |
+
system_prompt = gr.Textbox(
|
182 |
+
lines=4,
|
183 |
+
value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.",
|
184 |
+
label="System Prompt for Captioning",
|
185 |
+
visible=True # Changed to visible
|
186 |
+
)
|
187 |
+
temperature_slider = gr.Slider(
|
188 |
+
minimum=0.0, maximum=2.0, value=0.6, step=0.05,
|
189 |
+
label="Temperature",
|
190 |
+
info="Higher values make the output more random, lower values make it more deterministic.",
|
191 |
+
visible=True # Changed to visible
|
192 |
+
)
|
193 |
+
top_p_slider = gr.Slider(
|
194 |
+
minimum=0.0, maximum=1.0, value=0.9, step=0.01,
|
195 |
+
label="Top-p",
|
196 |
+
visible=True # Changed to visible
|
197 |
+
)
|
198 |
+
max_tokens_slider = gr.Slider(
|
199 |
+
minimum=1, maximum=2048, value=368, step=1,
|
200 |
+
label="Max New Tokens",
|
201 |
+
info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
|
202 |
+
visible=False # Changed to visible
|
203 |
+
)
|
204 |
+
log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible
|
205 |
+
|
206 |
+
gr.Markdown("**Tips:** 8 steps is all you need!")
|
207 |
+
|
208 |
+
generate_button.click(
|
209 |
+
fn=process_image,
|
210 |
+
inputs=[
|
211 |
+
control_image, prompt, system_prompt, scale, steps,
|
212 |
+
controlnet_conditioning_scale, guidance_scale, seed,
|
213 |
+
guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt
|
214 |
+
],
|
215 |
+
outputs=[output_caption, generated_image]
|
216 |
+
)
|
217 |
+
|
218 |
+
caption_button.click(
|
219 |
+
fn=caption,
|
220 |
+
inputs=[control_image, system_prompt, temperature_slider, top_p_slider, max_tokens_slider, log_prompt],
|
221 |
+
outputs=output_caption,
|
222 |
+
)
|
223 |
+
|
224 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -16,4 +16,5 @@ gradio_imageslider
|
|
16 |
bitsandbytes
|
17 |
pydantic==2.10.6
|
18 |
attention_map_diffusers
|
19 |
-
liger-kernel==0.5.9
|
|
|
|
16 |
bitsandbytes
|
17 |
pydantic==2.10.6
|
18 |
attention_map_diffusers
|
19 |
+
liger-kernel==0.5.9
|
20 |
+
moondream
|