LPX55's picture
Update debug.py
ea5a4a5 verified
# logging.py
import os
import uuid
import time
from huggingface_hub import CommitScheduler, HfApi
from PIL import Image
import numpy as np
from diffusers.utils import load_image
APP_VERSION = "0_4"
HF_DATASET_REPO = "LPX55/upscaler_logs" # Change to your dataset repo
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") # Make sure this is set in your environment
LOG_DIR = "logs_" + APP_VERSION
IMAGE_DIR = os.path.join(LOG_DIR, "upscaler")
LOG_FILE = os.path.join(LOG_DIR, f"{int(time.time())}-logs.csv")
api = HfApi(token=HF_TOKEN)
scheduler = CommitScheduler(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
folder_path=LOG_DIR,
every=5,
private=True,
token=HF_TOKEN,
path_in_repo="v" + APP_VERSION
)
# def cache_temp(img_id):
# api.upload_file(
# path_or_fileobj=os.path.join("/tmp/gradio", f"{img_id}"),
# path_in_repo="/v" + APP_VERSION + "/" + img_id,
# repo_id=HF_DATASET_REPO,
# repo_type="dataset",
# token=HF_TOKEN,
# )
def save_image(image_id, image_path: Image.Image) -> None:
os.makedirs(IMAGE_DIR, exist_ok=True)
print("Image ID: " + image_id)
print("Image ID Type: " + str(type(image_id)))
save_image_path = os.path.join(IMAGE_DIR, f"{image_id}")
print("Save image path: " + save_image_path)
try:
loaded = load_image(image_path)
cache_file = "/tmp/gradio/" + str(uuid.uuid4()) + ".png"
loaded.save(cache_file, "PNG")
print("Loaded Type: " + str(type(loaded)))
with scheduler.lock:
try:
# cache_temp(cache_file)
#print("Cache path: " + cache_file)
#print("Type: " + str(type(cache_file)))
img2 = Image.open(cache_file)
img2.save(save_image_path)
print(f"Saved image: {save_image_path}")
except Exception as e:
print(f"Error saving image: {str(e)}")
except Exception as e:
print(f"Error loading image: {str(e)}")
def log_params(
prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end,
before_image, after_image, user=None
):
before_id = str(uuid.uuid4()) + "_before.png"
after_id = str(uuid.uuid4()) + "_after.png"
before_path = os.path.join(IMAGE_DIR, before_id)
after_path = os.path.join(IMAGE_DIR, after_id)
print("Type before: " + str(type(before_image)))
print("Type after: " + str(type(after_image)))
save_image(before_id, before_image)
save_image(after_id, after_image)
#print("Before path: " + before_path)
#print("After path: " + after_path)
is_new = not os.path.exists(LOG_FILE)
with open(LOG_FILE, "a", newline='') as f:
import csv
writer = csv.writer(f)
if is_new:
writer.writerow([
"timestamp", "user", "prompt", "scale", "steps", "controlnet_conditioning_scale",
"guidance_scale", "seed", "guidance_end", "before_image", "after_image"
])
writer.writerow([
time.strftime("%Y-%m-%dT%H:%M:%S"),
user or "anonymous",
prompt, scale, steps, controlnet_conditioning_scale,
guidance_scale, seed, guidance_end, before_path, after_path
])