Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,398 Bytes
92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 3373907 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 3373907 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 42c14c6 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 3373907 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc 73d5581 92cabbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# app_v4.py
import gradio as gr
import torch
from gradio_client import Client, handle_file
import spaces
import os
import datetime
import io
import numpy as np
import moondream as md
from transformers import T5EncoderModel
from diffusers import FluxControlNetPipeline, FluxControlNetInpaintPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from PIL import Image
from threading import Thread
from typing import Generator
from huggingface_hub import CommitScheduler, HfApi
from debug import log_params, scheduler, save_image
from huggingface_hub.utils._runtime import dump_environment_info
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#############################
presets = {
"Strict Upscale": {
"scale": 1.0,
"steps": 8,
"controlnet_conditioning_scale": 0.75,
"guidance_scale": 4.0,
"guidance_end": 0.9
},
"Creative Upscale": {
"scale": 2.0,
"steps": 6,
"controlnet_conditioning_scale": 0.42,
"guidance_scale": 3.0,
"guidance_end": 0.5
},
"High Detail Upscale": {
"scale": 1.25,
"steps": 10,
"controlnet_conditioning_scale": 0.9,
"guidance_scale": 10.0,
"guidance_end": 0.9
}
}
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = 1000000
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
md_api_key = os.getenv("MD_KEY")
model = md.vl(api_key=md_api_key)
try:
# Set max memory usage for ZeroGPU
torch.cuda.set_per_process_memory_fraction(1.0)
torch.set_float32_matmul_precision("high")
except Exception as e:
print(f"Error setting memory usage: {e}")
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
"LPX55/FLUX.1-merged_lightning_v2",
subfolder="text_encoder_2",
torch_dtype=torch.bfloat16,
token=huggingface_token
)
transformer = FluxTransformer2DModel.from_pretrained(
"LPX55/FLUX.1-merged_lightning_v2", subfolder='transformer', torch_dytpe=torch.bfloat16
)
pipe_upscaler = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1M-8step_upscaler-cnet",
torch_dtype=torch.bfloat16,
text_encoder_2=text_encoder_2_unquant,
token=huggingface_token
)
pipe_upscaler.to("cuda")
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintPipeline.from_pretrained(
"LPX55/FLUX.1-merged_lightning_v2",
controlnet=controlnet,
transformer=transformer,
torch_dtype=torch.bfloat16,
token=huggingface_token
)
pipe.to("cuda")
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
try:
dump_environment_info()
except Exception as e:
print(f"Failed to dump env info: {e}")
def get_image_dimensions(image: Image) -> str:
width, height = image.size
return f"Original Image Dimensions: {width}x{height}"
def resize_image_to_max_side(image: Image, max_side_length=1024) -> Image:
width, height = image.size
ratio = min(max_side_length / width, max_side_length / height)
new_size = (int(width * ratio), int(height * ratio))
resized_image = image.resize(new_size, Image.BILINEAR)
return resized_image
def combine_caption_focus(caption, focus):
try:
if caption is None:
caption = ""
if focus is None:
focus = "highly detailed photo, raw photography."
return (str(caption) + "\n\n" + str(focus)).strip()
except Exception as e:
print(f"Error combining caption and focus: {e}")
return "highly detailed photo, raw photography."
def generate_caption(control_image):
try:
if control_image is None:
return "Waiting for control image...", "Original Image Dimensions: N/A"
# Get original dimensions
original_dimensions = get_image_dimensions(control_image)
# Resize the image to a maximum longest side of 1024 pixels
control_image = resize_image_to_max_side(control_image, max_side_length=1024)
# Generate a detailed caption
mcaption = model.caption(control_image, length="short")
detailed_caption = mcaption["caption"]
print(f"Detailed caption: {detailed_caption}")
return detailed_caption, original_dimensions
except Exception as e:
print(f"Error generating caption: {e}")
return "A detailed photograph", "Original Image Dimensions: N/A"
def generate_focus(control_image, focus_list):
try:
if control_image is None:
return None, "Original Image Dimensions: N/A"
if focus_list is None:
return "", "Original Image Dimensions: N/A"
# Get original dimensions
original_dimensions = get_image_dimensions(control_image)
# Resize the image to a maximum longest side of 1024 pixels
control_image = resize_image_to_max_side(control_image, max_side_length=1024)
# Generate a detailed caption
focus_query = model.query(control_image, "Please provide a concise but illustrative description of the following area(s) of focus: " + focus_list)
focus_description = focus_query["answer"]
print(f"Areas of focus: {focus_description}")
return focus_description, original_dimensions
except Exception as e:
print(f"Error generating focus: {e}")
return "highly detailed photo, raw photography.", "Original Image Dimensions: N/A"
@spaces.GPU(duration=6, progress=gr.Progress(track_tqdm=True))
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
generator = torch.Generator().manual_seed(seed)
# Ensure transparency is preserved
control_image = control_image.convert("RGBA")
# Resize the image to a maximum longest side of 1024 pixels
control_image = resize_image_to_max_side(control_image, max_side_length=1024)
w, h = control_image.size
# Crop to nearest multiple of 32
w = w - w % 32
h = h - h % 32
# Corrected resizing code
control_image = control_image.resize((w, h), resample=2)
print(f"Resized image dimensions: {control_image.size[0]}x{control_image.size[1]}")
print(f"PromptLog: {repr(prompt)}")
# Convert image to RGB for processing, but keep alpha channel for transparency
control_image_rgb = control_image.convert("RGB")
control_image_alpha = control_image.split()[-1]
# Convert alpha channel to a mask (transparent = white, opaque = black)
# White corresponds to 1 (to be inpainted), black corresponds to 0 (to be preserved)
# Convert alpha to numpy array for processing
alpha_array = np.array(control_image_alpha)
# Create binary mask (1 for transparent, 0 for opaque)
mask = (alpha_array > 128).astype(np.float32) # 1 for transparent (to be inpainted), 0 for opaque
# Optional: Visualize the mask (for debugging purposes)
# mask_image = Image.fromarray((mask * 255).astype(np.uint8))
# mask_image.show()
with torch.inference_mode():
image = pipe(
image=control_image_rgb,
generator=generator,
prompt=prompt,
control_image=control_image_rgb,
mask_image=mask, # Pass the numpy array as the mask
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
control_guidance_start=0.0,
control_guidance_end=guidance_end,
).images[0]
# Reapply the alpha channel to the generated image
image = image.convert("RGBA")
image.putalpha(control_image_alpha)
return image
def update_parameters(preset):
if preset in presets:
params = presets[preset]
return (
params["scale"],
params["steps"],
params["controlnet_conditioning_scale"],
params["guidance_scale"],
params["guidance_end"]
)
else:
# Default values if preset is not found
return 1.0, 8, 0.6, 3.5, 1.0
def process_image(control_image, user_prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature, max_new_tokens, log_prompt):
# Initialize with empty caption
final_prompt = user_prompt.strip()
# If no user prompt provided, generate a caption first
if not final_prompt:
# Generate a detailed caption
mcaption = model.caption(control_image, length="normal")
detailed_caption = mcaption["caption"]
final_prompt = detailed_caption
yield f"Using caption: {final_prompt}", None, final_prompt
yield f"Generating with: {final_prompt}", None, final_prompt
# Generate the image
try:
image = generate_image(
prompt=final_prompt,
scale=scale,
steps=steps,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
seed=seed,
guidance_end=guidance_end
)
try:
# Ensure the image is saved with transparency
with io.BytesIO() as output:
image.save(output, format="PNG")
debug_img = Image.open(output).convert("RGBA")
save_image("/tmp/" + str(seed) + "output.png", debug_img)
except Exception as e:
print("Error 160: " + str(e))
log_params(final_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, control_image, image)
yield f"Completed! Used prompt: {final_prompt}", image, final_prompt
except Exception as e:
print("Error: " + str(e))
yield f"Error: {str(e)}", None, None
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as demo:
gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
# status_box = gr.Markdown("🔄 Warming up...")
with gr.Row():
with gr.Accordion():
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
with gr.Accordion():
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=4, info="Enter your prompt here or wait for auto-generation...", label="Image Description")
focus = gr.Textbox(label="Area(s) of Focus", info="e.g. 'face', 'eyes', 'hair', 'clothes', 'background', etc.", value="clothing material, textures, ethnicity")
scale = gr.Slider(1, 3, value=1, label="Scale (Upscale Factor)", step=0.1)
with gr.Row():
generate_button = gr.Button("Generate Image", variant="primary")
caption_button = gr.Button("Generate Caption", variant="secondary")
with gr.Column(scale=1):
with gr.Row():
preset_choices = list(presets.keys())
preset_radio = gr.Radio(choices=preset_choices, label="Select Preset", value=preset_choices[0])
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
steps = gr.Slider(2, 16, value=8, label="Steps", step=1)
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
original_dimensions = gr.Markdown(value="Original Image Dimensions: N/A") # New output for dimensions
with gr.Row():
with gr.Accordion("Auto-Caption settings", open=False, visible=False):
system_prompt = gr.Textbox(
lines=4,
value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.",
label="System Prompt for Captioning",
visible=False # Changed to visible
)
temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05,
label="Temperature",
info="Higher values make the output more random, lower values make it more deterministic.",
visible=False # Changed to visible
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=368, step=1,
label="Max New Tokens",
info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
visible=False # Changed to visible
)
log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible
gr.Markdown("**Tips:** 8 steps is all you need! Incredibly powerful tool, usage instructions coming soon.")
with gr.Accordion("Auth for those Getting ZeroGPU errors.", open=False, elem_id="zgpu"):
msg1 = gr.Markdown()
try_btn = gr.LoginButton()
# sus = ['x-zerogpu-token', 'x-zerogpu-uuid', 'x-proxied-host', 'x-proxied-path', 'x-proxied-replica', 'x-request-id', 'x-ip-token']
# x_ip_token = request.headers['X-IP-TOKEN']
# print(str(x_ip_token))
# client = Client("LPX55/zerogpu-experiments", hf_token=huggingface_token, headers={"x-ip-token": x_ip_token})
# cresult = client.predict(
# n=3,
# api_name="/predict"
# )
caption_state = gr.State()
focus_state = gr.State()
log_state = gr.State()
generate_button.click(
fn=process_image,
inputs=[
control_image, prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature_slider, max_tokens_slider, log_prompt
],
outputs=[log_state, generated_image, prompt]
)
control_image.upload(
generate_caption,
inputs=[control_image],
outputs=[caption_state, original_dimensions]
).then(
generate_focus,
inputs=[control_image, focus],
outputs=[focus_state, original_dimensions]
).then(
combine_caption_focus,
inputs=[caption_state, focus_state],
outputs=[prompt]
)
caption_button.click(
fn=generate_caption,
inputs=[control_image],
outputs=[prompt, original_dimensions]
).then(
generate_focus,
inputs=[control_image, focus],
outputs=[focus_state, original_dimensions]
).then(
combine_caption_focus,
inputs=[caption_state, focus_state],
outputs=[prompt]
)
preset_radio.change(
fn=update_parameters,
inputs=[preset_radio],
outputs=[scale, steps, controlnet_conditioning_scale, guidance_scale, guidance_end]
)
def hello(profile: gr.OAuthProfile | None) -> str:
if profile is None:
return "Hello guest! There is a bug with HF ZeroGPUs that are afffecting some usage on certain spaces. Testing out some possible solutions."
return f"You are logged in as {profile.name}. If you run into incorrect messages about ZeroGPU runtime credits being out, PLEASE give me a heads up so I can investigate further."
demo.load(hello, inputs=None, outputs=msg1)
demo.queue().launch(show_error=True) |