Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,774 Bytes
0353b8e 45a5338 0353b8e 45a5338 0353b8e 45a5338 0353b8e 75e0f2f 0353b8e ff2724e 0353b8e 3f9b082 ab738b4 3f9b082 0353b8e 3f9b082 ab738b4 0353b8e ab738b4 0353b8e 3f9b082 ab738b4 3f9b082 ab738b4 0353b8e 3f9b082 ab738b4 3f9b082 ab738b4 3f9b082 ab738b4 3f9b082 0353b8e 45a5338 0353b8e 45a5338 0353b8e 45a5338 0353b8e 484dd05 0353b8e 3f9b082 08e9ffe 0353b8e 45a5338 0353b8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import torch
import spaces
import os
from diffusers.utils import load_image
from diffusers.hooks import apply_group_offloading
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from liger_kernel.transformers import apply_liger_kernel_to_llama
from PIL import Image
from threading import Thread
from typing import Generator
from peft import PeftModel, PeftConfig
import gradio as gr
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
MAX_SEED = 1000000
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
cap_processor = AutoProcessor.from_pretrained(MODEL_PATH)
cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}"
cap_model.eval()
apply_liger_kernel_to_llama(model=cap_model.language_model)
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
subfolder="text_encoder_2",
torch_dtype=torch.bfloat16,
token=huggingface_token
)
pipe = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1M-8step_upscaler-cnet",
torch_dtype=torch.bfloat16,
text_encoder_2=text_encoder_2_unquant,
token=huggingface_token
)
pipe.to("cuda")
@spaces.GPU()
@torch.no_grad()
def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
torch.cuda.empty_cache()
if input_image is None:
yield "No image provided. Please upload an image."
return
if log_prompt:
print(f"PromptLog: {repr(prompt)}")
convo = [
{
"role": "system",
"content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.",
},
{
"role": "user",
"content": prompt.strip(),
},
]
convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
assert isinstance(convo_string, str)
inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda')
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True if temperature > 0 else False,
suppress_tokens=None,
use_cache=True,
temperature=temperature if temperature > 0 else None,
top_k=None,
top_p=top_p if temperature > 0 else None,
streamer=streamer,
)
_= cap_model.generate(**generate_kwargs)
output = cap_model.generate(**generate_kwargs)
print(f"Generated {len(output[0])} tokens")
@spaces.GPU(duration=10)
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
generator = torch.Generator().manual_seed(seed)
# Load control image
control_image = load_image(control_image)
w, h = control_image.size
w = w - w % 32
h = h - h % 32
control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
with torch.inference_mode():
image = pipe(
generator=generator,
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
control_guidance_start=0.0,
control_guidance_end=guidance_end,
).images[0]
return image
def process_image(control_image, user_prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature, top_p, max_new_tokens, log_prompt):
# Initialize with empty caption
final_prompt = user_prompt.strip()
# If no user prompt provided, generate a caption first
if not final_prompt:
# Generate caption
caption_gen = caption(
input_image=control_image,
prompt=system_prompt,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
log_prompt=log_prompt
)
# Get the full caption by exhausting the generator
generated_caption = ""
for chunk in caption_gen:
generated_caption += chunk
yield generated_caption, None # Update caption in real-time
final_prompt = generated_caption
yield f"Using caption: {final_prompt}", None
# Show the final prompt being used
yield f"Generating with: {final_prompt}", None
# Generate the image
try:
image = generate_image(
prompt=final_prompt,
scale=scale,
steps=steps,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
seed=seed,
guidance_end=guidance_end
)
yield f"Completed! Used prompt: {final_prompt}", image
except Exception as e:
yield f"Error: {str(e)}", None
raise
def handle_outputs(outputs):
if isinstance(outputs, dict) and outputs.get("__type__") == "update_caption":
return outputs["caption"], None
return outputs
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as iface:
gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
with gr.Row():
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
output_caption = gr.Textbox(label="Caption")
scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
generate_button = gr.Button("Generate Image", variant="primary")
caption_button = gr.Button("Generate Caption", variant="secondary")
with gr.Column(scale=1):
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
steps = gr.Slider(2, 16, value=8, label="Steps")
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
with gr.Row():
with gr.Accordion("Generation settings", open=False):
system_prompt = gr.Textbox(
lines=4,
value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.",
label="System Prompt for Captioning",
visible=True # Changed to visible
)
temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05,
label="Temperature",
info="Higher values make the output more random, lower values make it more deterministic.",
visible=True # Changed to visible
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.9, step=0.01,
label="Top-p",
visible=True # Changed to visible
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=368, step=1,
label="Max New Tokens",
info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
visible=False # Changed to visible
)
log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible
gr.Markdown("**Tips:** 8 steps is all you need!")
generate_button.click(
fn=process_image,
inputs=[
control_image, prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt
],
outputs=[output_caption, generated_image]
)
caption_button.click(
fn=caption,
inputs=[control_image, system_prompt, temperature_slider, top_p_slider, max_tokens_slider, log_prompt],
outputs=output_caption,
)
iface.launch() |