File size: 7,832 Bytes
c0490dd
 
 
da90319
c0490dd
 
43a2073
c0490dd
2e0c7f5
4da7140
c0490dd
f271448
c0490dd
 
adf753c
c0490dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5efe2c
b4abd41
 
e5efe2c
ee8a870
b4abd41
e5efe2c
ee8a870
b4abd41
e5efe2c
 
5e6c0cc
 
2e0c7f5
b4abd41
c0490dd
 
 
 
2e0c7f5
c0490dd
3409aa3
ee8a870
 
 
 
c0490dd
 
3facfbb
6c41233
c0490dd
b4abd41
c0490dd
 
 
 
 
bfd8827
 
c0490dd
 
bc47113
c0490dd
bfd8827
6e8bc8b
bfd8827
c0490dd
 
bc47113
 
c0490dd
 
bfd8827
c0490dd
b4abd41
c0490dd
 
 
 
bfd8827
c0490dd
b4abd41
43a2073
c0490dd
 
 
 
 
 
bc47113
c0490dd
 
 
 
f271448
bfd8827
 
 
c0490dd
b4abd41
c0490dd
 
 
 
 
6e8bc8b
c0490dd
b4abd41
c0490dd
bc47113
c0490dd
b4abd41
c0490dd
 
 
 
 
bfd8827
 
6e8bc8b
bfd8827
 
b4abd41
c0490dd
 
b4abd41
bc47113
c0490dd
b4abd41
5dc1993
b4abd41
6c0b559
 
c0490dd
 
 
 
 
b4abd41
c0490dd
 
b4abd41
3facfbb
c0490dd
 
3facfbb
c0490dd
 
b4abd41
c0490dd
 
 
 
 
bc47113
b4abd41
bc47113
 
 
 
 
c0490dd
b4abd41
c0490dd
 
 
 
 
 
b4abd41
c0490dd
 
6ac2fca
c0490dd
 
 
b4abd41
f469b17
b4abd41
f469b17
b4abd41
 
c0490dd
ff771b6
 
 
 
 
 
 
 
b4abd41
ff771b6
0e1961e
c0490dd
 
b4abd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0490dd
 
 
bc47113
 
 
 
 
 
 
 
c0490dd
 
b4abd41
c0490dd
 
6c0b559
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel, FluxPipeline, AutoencoderTiny, AutoencoderKL
from transformers import T5Tokenizer
from diffusers.pipelines import FluxControlNetPipeline
from diffusers.utils import load_image
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download, hf_hub_download

css = """
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
    device = "cuda"
else:
    power_device = "CPU"
    device = "cpu"


huggingface_token = os.getenv("HUGGINFACE_TOKEN")

model_path = snapshot_download(
    repo_id="LPX55/FLUX.1-merged_uncensored", 
    repo_type="model", 
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="FLUX.1-merged_uncensored",
    token=huggingface_token, # type a new token-id.
)

# tokenizer_2 = T5Tokenizer.from_pretrained("LPX55/FLUX.1-merged_uncensored", subfolder="tokenizer_2", token=huggingface_token)
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to(device)
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
    "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
    "LPX55/FLUX.1-merged_uncensored", controlnet=controlnet, torch_dtype=torch.bfloat16, vae=good_vae, token=huggingface_token,
)

# pipe.load_lora_weights(
#     hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
# )
# pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
pipe.to(device)
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1536 * 1536
torch.cuda.empty_cache()


def process_input(input_image, upscale_factor, **kwargs):
    w, h = input_image.size
    w_original, h_original = w, h
    aspect_ratio = w / h

    was_resized = False

    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(
            f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
        )
        gr.Info(
            f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
        )
        input_image = input_image.resize(
            (
                int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
                int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
            )
        )
        was_resized = True

    # resize to multiple of 8
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8

    return input_image.resize((w, h)), w_original, h_original, was_resized


@spaces.GPU#(duration=42)
def infer(
    seed,
    randomize_seed,
    input_image,
    num_inference_steps,
    upscale_factor,
    controlnet_conditioning_scale,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    true_input_image = load_image(input_image)
    input_image, w_original, h_original, was_resized = process_input(
        input_image, upscale_factor
    )

    # rescale with upscale factor
    w, h = input_image.size
    control_image = input_image.resize((w * upscale_factor, h * upscale_factor))

    generator = torch.Generator().manual_seed(seed)

    gr.Info("Upscaling image...")
    image = pipe(
        prompt="",
        control_image=control_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        num_inference_steps=num_inference_steps,
        guidance_scale=3.5,
        height=control_image.size[1],
        width=control_image.size[0],
        generator=generator,
    ).images[0]

    if was_resized:
        gr.Info(
            f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
        )

    # resize to target desired size
    image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
    image.save("output.jpg")
    # convert to numpy
    return [true_input_image, image, seed]


with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
    # with gr.Column(elem_id="col-container"):
    gr.HTML("<center><h1>FLUX.1-Dev Upscaler</h1></center>")
    
    with gr.Row():
        run_button = gr.Button(value="Run")

    with gr.Row():
        with gr.Column(scale=4):
            input_im = gr.Image(label="Input Image", type="pil")
        with gr.Column(scale=1):
            num_inference_steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=6,
                maximum=50,
                step=1,
                value=8,
            )
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=4,
                step=1,
                value=4,
            )
            controlnet_conditioning_scale = gr.Slider(
                label="Controlnet Conditioning Scale",
                minimum=0.1,
                maximum=1.5,
                step=0.1,
                value=0.6,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    with gr.Row():
        result = ImageSlider(label="Input / Output", type="pil", interactive=True)

    examples = gr.Examples(
        examples=[
        #    [42, False, "examples/image_1.jpg", 28, 4, 0.6],
            [42, False, "examples/image_2.jpg", 28, 4, 0.6],
        #    [42, False, "examples/image_3.jpg", 28, 4, 0.6],
            [42, False, "examples/image_4.jpg", 28, 4, 0.6],
        #    [42, False, "examples/image_5.jpg", 28, 4, 0.6],
        #    [42, False, "examples/image_6.jpg", 28, 4, 0.6],
        ],
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        fn=infer,
        outputs=result,
        cache_examples="lazy",
    )

    # examples = gr.Examples(
    #     examples=[
    #         #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_2.jpg", 28, 4, 0.6],
    #         #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
    #         #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_5.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_6.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_7.jpg", 28, 4, 0.6],
    #     ],
    #     inputs=[
    #         seed,
    #         randomize_seed,
    #         input_im,
    #         num_inference_steps,
    #         upscale_factor,
    #         controlnet_conditioning_scale,
    #     ],
    # )

    gr.on(
        [run_button.click],
        fn=infer,
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        outputs=result,
        show_api=False,
        # show_progress="minimal",
    )

demo.queue().launch(share=False, show_api=False)