Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,528 Bytes
98ee0ed 754f4ee 98ee0ed aa01e1d 5cf7772 5ccb60d 98ee0ed 5ccb60d 5cf7772 5a0f4a8 5cf7772 6c9625b 5cf7772 5ccb60d 5cf7772 98ee0ed 5cf7772 5ccb60d 5cf7772 743c9f3 754f4ee 743c9f3 754f4ee eda7734 743c9f3 eda7734 5cf7772 98ee0ed eda7734 98ee0ed 754f4ee 98ee0ed 85e57ee 5cf7772 06b848c 5cf7772 beb0273 a2975fc 5cf7772 5ccb60d 5cf7772 5ccb60d c07dbe5 5cf7772 eda7734 5cf7772 5ccb60d 5cf7772 5ccb60d 5cf7772 5ccb60d 5cf7772 5ccb60d 5cf7772 5ccb60d 743c9f3 b31c038 743c9f3 5cf7772 b31c038 5cf7772 7bd8d03 754f4ee 743c9f3 eda7734 351e4dd 743c9f3 351e4dd 743c9f3 754f4ee 5cf7772 743c9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import subprocess
# subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
import torch
import spaces
import os
import datetime
import io
import moondream as md
from datasets import load_dataset, Dataset, DatasetDict, Image as HFImage
from diffusers.utils import load_image
from diffusers.hooks import apply_group_offloading
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
# from liger_kernel.transformers import apply_liger_kernel_to_llama
from PIL import Image
from threading import Thread
from typing import Generator
# from peft import PeftModel, PeftConfig
import gradio as gr
from huggingface_hub import CommitScheduler, HfApi
from debug import log_params, scheduler
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
MAX_SEED = 1000000
md_api_key = os.getenv("MD_KEY")
model = md.vl(api_key=md_api_key)
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
subfolder="text_encoder_2",
torch_dtype=torch.bfloat16,
token=huggingface_token
)
pipe = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1M-8step_upscaler-cnet",
torch_dtype=torch.bfloat16,
text_encoder_2=text_encoder_2_unquant,
token=huggingface_token
)
pipe.to("cuda")
@spaces.GPU(duration=10)
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
generator = torch.Generator().manual_seed(seed)
# Load control image
control_image = load_image(control_image)
w, h = control_image.size
w = w - w % 32
h = h - h % 32
control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
print(f"PromptLog: {repr(prompt)}")
with torch.inference_mode():
image = pipe(
generator=generator,
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
control_guidance_start=0.0,
control_guidance_end=guidance_end,
).images[0]
return image
def combine_caption_focus(caption, focus):
if caption is None:
caption = ""
if focus is None:
focus = ""
return (caption + "\n\n" + focus).strip()
def generate_caption(control_image):
if control_image is None:
return None, None
# Generate a detailed caption
mcaption = model.caption(control_image, length="normal")
detailed_caption = mcaption["caption"]
print(f"Detailed caption: {detailed_caption}")
return detailed_caption
def generate_focus(control_image, focus_list):
if control_image is None:
return None
if focus_list is None:
return ""
# Generate a detailed caption
focus_query = model.query(control_image, "Please provide a concise but illustrative description of the following area(s) of focus: " + focus_list)
focus_description = focus_query["answer"]
print(f"Areas of focus: {focus_description}")
return focus_description
def process_image(control_image, user_prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature, top_p, max_new_tokens, log_prompt):
# Initialize with empty caption
final_prompt = user_prompt.strip()
# If no user prompt provided, generate a caption first
if not final_prompt:
# Generate a detailed caption
mcaption = model.caption(control_image, length="normal")
detailed_caption = mcaption["caption"]
print(f"Detailed caption: {detailed_caption}")
final_prompt = detailed_caption
yield f"Using caption: {final_prompt}", None, final_prompt
# Show the final prompt being used
yield f"Generating with: {final_prompt}", None, final_prompt
# Generate the image
try:
image = generate_image(
prompt=final_prompt,
scale=scale,
steps=steps,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
seed=seed,
guidance_end=guidance_end
)
log_params(final_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, control_image, image)
yield f"Completed! Used prompt: {final_prompt}", image, final_prompt
except Exception as e:
yield f"Error: {str(e)}", None
def handle_outputs(outputs):
if isinstance(outputs, dict) and outputs.get("__type__") == "update_caption":
return outputs["caption"], None
return outputs
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as demo:
gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
with gr.Row():
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=4, info="Enter your prompt here or wait for auto-generation...", label="Image Description")
focus = gr.Textbox(label="Areas of Focus", info="e.g. 'face', 'eyes', 'hair', 'clothes', 'background', etc.")
scale = gr.Slider(1, 3, value=1, label="Scale (Upscale Factor)", step=0.25)
with gr.Row():
generate_button = gr.Button("Generate Image", variant="primary")
caption_button = gr.Button("Generate Caption", variant="secondary")
with gr.Column(scale=1):
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
steps = gr.Slider(2, 16, value=8, label="Steps", step=1)
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
with gr.Row():
with gr.Accordion("Auto-Caption settings", open=False, visible=False):
system_prompt = gr.Textbox(
lines=4,
value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.",
label="System Prompt for Captioning",
visible=False # Changed to visible
)
temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05,
label="Temperature",
info="Higher values make the output more random, lower values make it more deterministic.",
visible=False # Changed to visible
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.9, step=0.01,
label="Top-p",
visible=False # Changed to visible
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=368, step=1,
label="Max New Tokens",
info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
visible=False # Changed to visible
)
log_prompt = gr.Checkbox(value=True, label="Log", visible=False) # Changed to visible
gr.Markdown("**Tips:** 8 steps is all you need! Incredibly powerful tool, usage instructions coming soon.")
caption_state = gr.State()
focus_state = gr.State()
log_state = gr.State()
generate_button.click(
fn=process_image,
inputs=[
control_image, prompt, system_prompt, scale, steps,
controlnet_conditioning_scale, guidance_scale, seed,
guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt
],
outputs=[log_state, generated_image, prompt]
)
control_image.upload(
generate_caption,
inputs=[control_image],
outputs=[caption_state]
).then(
generate_focus,
inputs=[control_image, focus],
outputs=[focus_state]
).then(
combine_caption_focus,
inputs=[caption_state, focus_state],
outputs=[prompt]
)
caption_button.click(
fn=generate_caption,
inputs=[control_image],
outputs=[prompt]
)
demo.launch(show_error=True)
|